

IWCTS 2009

Proceedings of

The Second International Workshop on Computational Transportation Science

in conjunction with ACM SIGSPATIAL GIS 2009

November 3, 2009, Seattle, WA, USA.

 ii

The Association for Computing Machinery, Inc.

1515 Broadway

New York, New York 10036

Copyright © 2008 by the Association for Computing Machinery, Inc (ACM). Permission to make digital or hard copies of

portions of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Request permission to republish from: Publications Dept. ACM, Inc. Fax +1-212-869-0481 or E-mail permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided that the

per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA

01923.

Notice to Past Authors of ACM-Published Articles
ACM intends to create a complete electronic archive of all articles and/or other material previously published by ACM. If

you have written a work that was previously published by ACM in any journal or conference proceedings prior to 1978, or

any SIG Newsletter at any time, and you do NOT want this work to appear in the ACM Digital Library, please inform

permissions@acm.org, stating the title of the work, the author(s), and where and when published.

ACM ISBN: 978-1-60558-324-2/08/11

Additional copies may be ordered prepaid from:

ACM Order Department

P.O. BOX 11405

Church Street Station

New York, NY 10286-1405

Phone: 1-800-342-6626

(U.S.A. and Canada)

+1-212-626-0500

(All other countries)

Fax: +1-212-944-1318

E-mail: acmhelp@acm.org

Printed in the U.S.A.

FOREWORD

IWCTS 2009, held in conjunction with the seventeenth international conference on the advances in
geographic information systems (ACM SIGSPATIAL GIS 2009), was the second international workshop
on Computational Transportation Science.

The aim of the workshop was to bring together the researchers from the areas of computer
science and transportation science to explore areas of synergy and lay a foundation for research
and development in the emerging discipline of Computational Trasnportation Science (CTS).
CTS is a discipline that combines computer science with modeling, planning, and economic
aspects of transportation. It aims to go beyond navigation methods and plans to address data
management issues and data mining in the area of transportation science thereby improving
efficiency, equity, mobility, accessibility, and safety of current transportation systems.

In the recent years, we have seen enormous progress in the areas of vehicular technology, hand-
held devices, and communication infrastructure that often involves millions sensors that can
communicate with each other. These advances definitely offer enormous potential to improve the
performance of current transportation applications. Miniature computing devices and advances in
wireless communication and sensor technology have definitely moved computing from
stationary desktops to mobile devices making computation in transportation more ubiquitous,
opening up enormous opportunities for information technology. However, the impact of
information technology on these applications does not match the dramatic effect it has had, on
other domains in business and science. In addition to implementing new computing strategies
specially suitable for popular wireless devices such as cell phones and PDAs, computer science
can also bring sophisticated geospatial and spatio-temporal information management capabilities
to the area of transportation science.

This workshop is the result of a tremendous team effort. We wish to express our immense
gratitude towards the authors for their valuable contribution. We thank the program committee
members for their timely and thorough reviews. We are extremely grateful to Prof Ouri Wolfson
for his guidance and generous help. Finally, we would like to express our appreciation to the
ACM SIGSPATIAL for sponsoring the workshop.

We hope that you found the program lively and thought-provoking, and that the workshop
provided you with a venue to share and discuss your ideas with other researchers and
practitioners.

November, 2009 IWCTS 2009 Organizing Chairs

IWCTS 2009 Organization

General Co-Chairs

Shashi Shekhar, University of Minnesota, USA.
Glenn Geers, NICTA, Australia.

Program Committee Co-Chairs

Betsy George, Oracle Corporation, USA.
Sangho Kim, ESRI, USA.

Steering Committee

Ouri Wolfson, University of Illinois at Chicago, USA.
Budhendra Bhaduri ,Oak Ridge National Laboratory, USA.

Program Committee

Gennady Andrienko , Fraunhofer Institute IAIS, Germany.
Walid Aref , Purdue University, USA.
Claus Brenner , Leibniz Universitat Hannover, Germany.
Chen Cai, Neville Roach Laboratory, National ICT Australia.
Oscar Franzese, Oak Ridge National Laboratory, USA.
Kostas Goulias, University of California, Santa Barbara, USA
Le Gruenwald, University of Oklahoma, USA.
Wee-Liang Heng, ESRI, USA.
Der-Horng Lee, National University of Singapore, Singapore.
Cheng Liu, Oak Ridge National Laboratory, USA
Harvey Miller, University of Utah, USA.
Jim Nutaro, Oak Ridge National Laboratory, USA.
Stacy Patterson, University of California, Santa Barbara, USA.
Jay Sandhu, ESRI, USA.
Monika Sester, University of Hannover, Germany.
Pravin Varaiya, University of California, Berkeley, USA.
Stephan Winter, The University of Melbourne, Australia.
Jack Wang, Oracle Corporation, USA.
Bo Xu, University of Illinois at Chicago, USA.
Bruce Ralston, University of Tennessee, USA.

iv

Table of Contents

Session 1

Shortest Paths in Time-Dependent FIFO Networks Using Edge Load Forecasts …… 1
Frank Dehne, Masoud T. Omran, and Jorg-Rudiger Sack (School of Computer Science, Carleton University
Ottawa, Canada).

Fuel-cache site-selection for polar research: A Summary of Results …………………. 7
Mark Dietz and Shashi Shekhar (Dept of Computer Science, University of Minnesota, Minneapolis, MN, USA).

Towards Modeling the Traffic Data on Road Networks ……………………………… 13
Ugur Demiryurek, Bei Pan, Farnoush Banaei-Kashani and Cyrus Shahabi (Dept of Computer Science,
University of Southern California, Los Angeles, CA, USA).

A Scalable Heuristic for Evacuation Planning in Large Road Network …………….. 19
Dafei Yin (Institute of GIS & Remote Sensing Peking University Beijing, China).

Session 2

Video Analytics for Multi-camera Traffic Surveillance ………………………………. 25
Dongyu Ang Yao Shen and Prakash Duraisamy (University of North Texas, USA).

Machine Learning Approach to Report Prioritization with an Application to ……... 31
Travel Time Dissemination
Piotr Szczurek, Bo Xu, Jie Lin and Ouri Wolfson (University of Illinois at Chicago, USA).

On the Performance of Adaptive Traffic Signal Control ……………………………. 37
Chen Cai, Bernhard Hengs, Getian Ye, Enyang Huang, Yang Wang, Carlos Aydos and Glenn Geers (Neville Roach
Laboratory, National ICT Australia, Department of Computer Science and Engineering, University of New South
Wales)

Trajectory pattern analysis for urban traffic ………………………………………… 43
Fosca Giannotti (ISTI - CNR, Pisa, Italy), Mirco Nanni (ISTI - CNR, Pisa, Italy), Dino Pedreschi (Dept of
Computer Science, University of Pisa, Italy) and Fabio Pinelli (ISTI - CNR, Pisa, Italy).

v

Shortest Paths in Time-Dependent FIFO Networks
Using Edge Load Forecasts ∗

Frank Dehne
School of Computer Science

Carleton University
Ottawa - Canada

frank@dehne.net

Masoud T. Omran
School of Computer Science

Carleton University
Ottawa - Canada

mtomran@scs.carleton.ca

Jörg-Rüdiger Sack
School of Computer Science

Carleton University
Ottawa - Canada

sack@scs.carleton.ca

ABSTRACT
We study the problem of finding shortest paths in time-
dependent networks with edge load forecasts where the be-
havior of each edge is modeled as a time-dependent arrival
function with FIFO property. Here, we present a new al-
gorithm that computes for a given start node s and desti-
nation node d, the shortest paths and earliest arrival times
for all possible starting times. Our algorithm runs in time
O((Fd + λ)(|E| + |V | log |V |)) where Fd is the output size
(number of linear pieces needed to represent the earliest
arrival time function) and λ is the input size (number of
linear pieces needed to represent the local earliest arrival
time functions for all edges in the network). Our method
improves significantly on the best previously known algo-
rithm which requires time O(Fmax|V ||E|) where Fmax ≥ Fd

is the maximum number of linear pieces needed to represent
the earliest arrival time function between the start node s
to any node in the network. It has been conjectured that
there are cases where Fmax is of super-polynomial size; how-
ever, even in such cases, Fd might still be of linear size. In
such cases, our algorithm would take polynomial time to find
the solution, while other methods require super-polynomial
time. Both of the above methods are not useful in practice
for graphs where Fd is of super-polynomial size. For such
graphs, we present the first approximation method to com-
pute for all possible starting times at s, the earliest arrival
times at d within error at most ǫ. Our algorithm runs in
time O(∆

ǫ
(|E| + |V | log |V |)) where ∆ is the difference be-

tween the earliest arrival times at d for the latest and earliest
starting times at s.

1. INTRODUCTION
Finding shortest paths in networks is one of the basic

operations in Transportation Science, Computer Networks,
Robotics, VLSI Design and many other applications. Al-
though well-studied conventional static shortest path algo-

∗Research supported by NSERC, SUN Microsystems of
Canada and HPCVL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

rithms play a fundamental role in applications with non-
changing nature, many real-world applications are changing
over time [1, 2, 6, 4]. For example, in a road network, the
shortest path from a given start node to a destination node
during rush hour is not the same as during low traffic pe-
riods. Here, we study dynamically changing applications in
which network properties are changing over time in a pre-
dictable manner and are given as edge load forecasts. For
example, in many road networks the traffic load on each link
changes predictably during the day. We are interested in
finding the shortest path between two nodes of the network
for any given time during the day. More precisely, a time-
dependent network with edge load forecasts is modeled as a
directed graph G = (V, E) where each edge (v, w) is assigned
an arrival time function avw(t) which represents the arrival
time at node w for departure time t at node v. Typically,
piece-wise linear arrival time functions are used to approx-
imate more complex functions. The notion of arrival time
function is extensible to any path p = 〈v1, v2, . . . , vk〉 of the
network. Starting from v1 at time t implies an arrival at vk

at time ap(t) = avk−1vk
(. . . (av2v3

(av1v2
(t)))). We note that

if the avi−1vi
(t) are piece-wise linear then ap(t) is piece-wise

linear as well. Given a start node s and a destination node
d, our goal is to find the earliest arrival time function Asd(t)
from s to d for all t ∈ [0, T]. Asd(t) is the minimum over all
ap(t) for all possible paths p from s to d. As discussed by
Orda and Rom in [15], this problem is NP -hard in its general
form but there are variations of the problem which are not.
For example, in earlier work [10], we considered a version of
the problem, where the slope of each linear piece is either 0
or 1. This can be viewed as a network in which edges are
available during given intervals and the travel time in each
interval is of fixed value. In such a network, if an edge is
not available for some arrival time, then one can wait until
the next interval becomes available. For such networks, we
proposed an O(κ(|E| + |V |Log|V |)) time algorithm. where
κ denotes the total number of availability intervals in the
entire graph.

Here, we consider a general class of time-dependent short-
est path problems in which the FIFO property holds. The
FIFO property is very common in many networks, including
road networks, and is defined as having non-decreasing ar-
rival time functions on all edges of the network. This means
that for every edge (v, w), a later start at v implies a later ar-
rival at w which is typically the case for predictable dynamic
networks. A naive algorithm for this case which computes
the earliest arrival time function for every possible path from
s to d and then calculates the lower envelope would need ex-

1

ponential time in many cases because many networks would
have an exponential number of possible paths between s and
d. As shown by Orda and Rom in [15], the time-dependent
shortest paths problem for a time-dependent network with
FIFO property can be solved in time O(Fmax|V ||E|) where
Fmax ≥ Fd is the maximum number of linear pieces needed
to represent the earliest arrival time function between s and
any node in the network.

In this paper, we present a new algorithm for solving the
time-dependent shortest paths problem for a time-dependent
network with FIFO property. The algorithm runs in time
O((Fd + λ)(|E| + |V | log |V |)), where Fd is the output size
(number of linear pieces needed to represent the earliest ar-
rival time function) and λ is the input size (number of lin-
ear pieces needed to represent the local earliest arrival time
functions for all edges in the network). Our method im-
proves significantly upon the best previously known method
by Orda and Rom [15]. It has been conjectured [9] that there
are cases, where Fmax is of super-polynomial size. Since
Fmax ≥ Fd, even in such cases, Fd might still be of lin-
ear size. In such cases, our algorithm would take polyno-
mial time to find the solution, while other methods require
super-polynomial time.

We also study the case where the output size Fd might
be [9] super-polynomial. All previously known methods
(including our method outlined above) are not useful in
practice for such graphs. In this paper, we present the
first approximation method for such instances of the time-
dependent shortest path problem. Our method computes
for all possible starting times at s the earliest arrival times
at d within error at most ǫ. Our algorithm runs in time
O(∆

ǫ
(|E|+|V | log |V |)) where ∆ is the difference between the

earliest arrival times at d for the latest and earliest starting
times at s.

The remainder of this paper is organized as follows. In
the following Section 2 we discuss previous work and re-
lated relevant results from similar problem settings. In Sec-
tion 3 we discuss some structural properties of the time-
dependent shortest path problem. Our new algorithm which
solves the time-dependent shortest paths problem for a time-
dependent network with FIFO property in time O((Fd +
λ)(|E| + |V | log |V |)) is presented in Section 4. Our ap-
proximation algorithm for time-dependent shortest path in-
stances with possibly super-polynomial size output is pre-
sented in Section 5. Section 6 concludes the paper.

2. PREVIOUS ALGORITHMS AND
RESULTS

The problem of finding a time-dependents shortest path
was first proposed in 1966 by Cooke and Halsey [7]. They
considered time to have discrete values. In real-world appli-
cations, arrival time functions are usually continuous time
functions and approximated by piece-wise linear functions.
For the remainder, we assume the FIFO property to hold
since this is the case for most practical networks and makes
the problem polynomial time solvable. In the following para-
graphs, we review previous results for this problem setting.

2.1 Lower Envelope Algorithms
By definition, the earliest arrival time function from s to d

is the minimum over all arrival time functions for every path
from s to d. This leads to a simple algorithm: compute the

arrival time functions of all paths from s to d and compute
the lower envelope. For more information on lower envelope
algorithms see e.g. [16]. Although this gives the correct
solution, such an algorithm is not efficient in that there could
be an exponential number of paths from s to d leading to
exponential time complexity.

2.2 Label Correcting Algorithms
A slightly modified version of standard label-correcting al-

gorithms (e.g., Bellman-Ford [3]) solves the time-dependent
shortest path problem. Here, instead of computing labels for
a specific time, one can do this simultaneously for all val-
ues of t. In this case, instead of working with scalar arrival
times at each node, we consider earliest arrival time func-
tions over all values of time. Orda and Rom [15] proposed
such an algorithm which on a FIFO network with piece-wise
linear functions has time complexity O(Fmax|V ||E|) where
Fmax ≥ Fd is the maximum number of linear pieces needed
to represent the earliest arrival time function between s and
any node in the network. This has been the best known
approach since 1990 when it was presented. Our algorithm
is a significant improvement of this method as well as of the
methods outlined in the following paragraph.

2.3 Label-Setting Algorithms
In a label-setting algorithm the goal is to compute, in

small pieces, actual correct values of output functions rather
than iteratively revising these functions. This approach is
similar to Dijkstra’s algorithm [11] for the static shortest
path problem. In contrast to label-correcting algorithms, it
is not possible to simply replace scalar label values by func-
tions to solve the problem because a minimum element (i.e.,
one function which is minimum over the entire domain) may
not exist. The main idea of the algorithm is to determine
the latest time φ, for each node, so that the current earliest
arrival time function for any time less than φ gives the actual
earliest arrival time to the node. For FIFO networks with
piece-wise linear arrival time functions, Dean [9] suggested
a label-setting algorithm that performs a single chronolog-
ical scan through time to establish output functions. The
algorithm employs the same approach used for solving para-
metric shortest path problems [5]. In the worst-case, this
algorithm has a running time of O(F ∗|E| log |V |) where F ∗

is the total number of pieces over all output functions in the
network.

Recently, Ding et al. [12] presented a simpler label-setting
algorithm for the time-dependents shortest path problem
for FIFO networks with piece-wise linear functions. The
algorithm scans a sequence of time steps the size of which
depends on the values of the arrival time functions. Careful
analysis of this algorithm shows that this approach yields a
solution with time complexity O(γ(|E|+ |V | log |V |)) which
contains a factor γ that is possibly unbounded because it
depends on the relative values of arrival time functions. An
example instance showing that the number of scanned time
steps can be unbounded and independent on |E|, |V |, and λ
is depicted in Figure 1.

3. STRUCTURAL PROPERTIES
Our new algorithm makes extensive use of some structural

properties of the problem discussed in this section.

3.1 Solution Function Structure

2

v1

v2

v3

v4

av1v2
(t)

t3 97

4

98

av1v3
(t)

t2 94

5

97

av2v3
(t)

t1 98

2

99

av2v4
(t)

t100 200

101

201

av2v4
(t)

t99 200

100

201

Figure 1: An example instance showing that the
number of scanned time steps for the Ding et al.
[12] algorithm, can be unbounded.

api
(t)

ap1
(t)

ap2
(t)

ap3
(t)

ap4
(t)

X-point
V-point

t

Asd(t)

Figure 2: X and V-points

The earliest arrival time function from s to d, Asd(t), is a
piece-wise linear function since all input arrival time func-
tions are assumed to be piece-wise linear functions and the
function operators used (function inverse, linear combina-

tion, function compound, min, max) do not change the lin-
earity of the result. We are interested in the points on the
curve Asd(t) that connect its different linear pieces, and will
refer to them as change points. We differentiate between two
types of change points. First, a change point may represent
the intersection between two pieces of arrival time functions
on different paths. Second, a change point may represent a
change point on one of the input arrival time functions for
a path from s to d. We refer to the first type as X-point
and to the second type as V-point. Figure 2 depicts an
arrangement of arrival time functions and identifies X and
V-points. Every V-point corresponds to a change point on
the arrival time function, ap(t), on some path p from s to
d. Each change point on the ap(t) function is the result of
a boundary point between two linear pieces of arrival time
functions on an edge of p introduced because of a compound
operation for computing ap(t). In the following lemma, we
will show that every boundary point of an edge arrival time
function can create at most one V-point on Asd(t).

Lemma 1. Suppose Pe is the set of all paths that include

edge e = (v, w) ∈ E and ae(t) is the arrival time function on

e which has λe linear pieces. Then, all arrival time functions

ape
(t), pe ∈ Pe, create in total at most λe V-points on Asd(t).

Proof: Let

ae(t) =

8

>

>

>

>

>

<

>

>

>

>

>

:

α1
et + β1

e 0 ≤ t ≤ T 1
e

α2
et + β2

e T 1
e < t ≤ T 2

e

...
...

αλe

e t + βλe

e T λe−1
e < t ≤ T λe

e

∞ T λe

e < t

be the arrival time function on e. For every boundary point
T i

e , i = 1 . . . λe, consider path pi
e to be the concatenation

of a path with the latest starting time (LST) from s which
arrives at v at time T i

e and a path with earliest arrival time
(EAT) to d which starts from v at time T i

e . Because of the
definition of pi

e, for any path pe ∈ Pe other than pi
e, T i

e will
create a change point either at (LST, EAT) or to the left
and above this point. Since (LST, EAT) is on api

e
(t) and

FIFO property holds, any points that fall to the left and
above (LST, EAT) are not on Asd(t), thereby other paths
can not create new change points on Asd(t). This proves
that all arrival time functions ape

(t), pe ∈ Pe, create in total
at most λe V-points on Asd(t). �

Let λ =
P

e∈E λe be the total number of linear pieces
on edge arrival time functions in the entire network. Since
every V-point comes from a boundary point on some edge
arrival time function, Lemma 1 implies that there can not
be more than O(λ) V-points on Asd(t).

3.2 Possibly Super-polynomial Output Size
In [9], the author conjectured that in a FIFO network with

piece-wise linear arrival time functions on edges, the earliest
arrival time function Asd(t) from a source node s to a des-
tination node d may have more than a polynomial number
of linear pieces. This means that there possibly exist net-
work structures that result in super-polynomial complexity
for earliest arrival time functions to some nodes of the net-
work.

The super-polynomial structure could appear as a sub-
graph of the actual input network, resulting in earliest ar-
rival time functions with super-polynomial number of pieces
for destination nodes whose shortest path from s passes
through the super-polynomial structures. However, the ear-
liest arrival time function from s to d could easily be of linear
size since the earliest arrival time path may not intersect the
super-polynomial structure at all. In this case, Fmax would
be of super-polynomial size and Fd would be of linear size.

4. A NEW ALGORITHM FOR INSTANCES
WITH POLYNOMIAL SIZE OUTPUT

Our new algorithm is based on the idea that instead of
building all earliest arrival time functions for all nodes in the
network, we find the earliest arrival time function to desti-
nation node d directly. The main problem here is to find
all starting times for which the earliest arrival time func-
tion from s to d, Asd(t), changes from one linear piece to
another as well as all linear functions between these change
points. In Section 3, we introduced two types of change
points in Asd(t): V-points and X-points. In Section 3, we
also showed that at most O(λ) V-points exist on Asd(t),
where λ is the total number of pieces in all input arrival
time functions. Moreover, using Dijkstra’s static shortest
path algorithm for every change point of all arrival time
functions of the input, both forward to d and backward to

3

A
sd

(t)

V-points

t

greatest slope

smallest slope

Figure 3: A sample Asd(t) function with all V-points
and their adjacent linear functions.

s, we capture all V-points that can potentially be on Asd(t).
(For reversibility of the time-dependent shortest path prob-
lem see [8].) To construct the entire function Asd(t), we also
compute the linear pieces to the left and to the right of each
V-point. These are pieces with the earliest arrival time and
the smallest (greatest) slope on the right (left) vicinity of
each V-point. Figure 3 shows a sample Asd(t) function once
all V-points have been detected. Note that, given a time t0,
the smallest (greatest) slope piece can be computed while
computing the earliest arrival time to d for starting time t0.
This is accomplished by keeping the product of slopes for
each node in the shortest path tree as a secondary key when
Dijkstra’s algorithm finds two or more entries of the heap
that have the same arrival time value. In this case, selecting
the entry with smallest (greatest) slope leads to the small-
est (greatest) slope linear piece. To show the correctness of
this approach consider any two paths from s to d starting at
time t0 with equal arrival times but different slopes on their
arrival time functions. The first time where they have equal
arrival time values is either at d or at some earlier node d′.
In the latter case, they will share the same “postfix” path
from d′ to d. In either case, selecting the smallest (great-
est) slope product from the heap, among equal arrival time
values, maintains the smallest (greatest) slope.

Thus far, we have determined all V-points and the slope
of Asd(t) in their vicinity. We build the remaining part of
Asd(t) by adding the missing piece between every pair of
consecutive V-points on Asd(t). Due to the linearity of the
input arrival functions, the X-points between two consec-
utive V-points are in concave position (seen from below).
Consider two consecutive V-points, Vl and Vr, found in the
previous step together with the linear pieces in their vicinity.
Two cases arise for the linear pieces to the right of Vl and to
the left of Vr. They either overlap, or they intersect in some
point I = (xI , yI). If they overlap, then the piece connecting
the two V-points is the solution (Figure 4-a). In case of an
intersection, two cases are possible. First, if calculating a
static shortest path at time xI returns the same arrival time
yI as for the intersection point then the pieces, vl to I and I
to vr are the solution (Figure 4-b). Second, if calculating a
static shortest path at time xI returns a value less than yI ,
then we found a new linear piece that is hiding the intersec-
tion point I = (xI , yI) (Figure 4-c). The linear pieces to the
right of Vl and to the left of Vr intersects the new piece, and
we recurse. See Theorem 1 for further details.

Algorithm 1 below shows the entire TDSP algorithm. It
determines both V-points and X-points in separate sections.
After initializing Asd(t) at the beginning of the algorithm
(Line 2), in Lines 3 through 11 we capture all V-points along

Asd(t) Asd(t)

t t

Asd(t)

t

(a) (c)(b)

V-points V-points

Intersection point Intersection point

New intersection points

Figure 4: (a) Overlapping pieces (b) Intersection
point on Asd(t) (c) Intersection point hidden by
another linear piece

with their adjacent linear pieces to their left and right. In
Lines 12 through 36 we detect all X-points on Asd(t). In
the first phase, for every edge e = (v, w) in the network
and for every boundary point T i

e corresponding to an edge
e, the algorithm finds the latest starting time (LST) from
s to arrive at v at time T i

e by calculating a static shortest
path algorithm (Dijkstra) backwards from v to s at time T i

e

(line 5). We also execute a forward static shortest path to
obtain the earliest arrival time (EAT) at d starting from
v at time T i

e (Line 6). This provides the rightmost and
lowest V-point that could be found on Asd(t) as a result of
boundary point T i

e . As shown earlier, for all other paths
that include e, V-points for T i

e will be hidden by some other
linear pieces. In order to make sure that (LST, EAT) is on
the final solution we calculate a static shortest path from s
to d starting at time LST (Line 7). If the arrival time is
the same as EAT , then (LST, EAT) is indeed a V-point on
Asd(t). In this case, to find the linear pieces near V-points
on Asd(t), we find the linear pieces with the smallest slope
and the largest slope adjacent to the left and right of each
V-point, respectively. Finally, we add each V-point found
along with its adjacent linear pieces to a list for use in the
next step (Lines 8 through 11).

In the second part of the algorithm, we first sort all V-
points by ascending order of LST value (Line 12). Then,
starting from the first two V-points, we read pair of con-
secutive points from the list and build the Asd(t) function
between them as we scan these points (Lines 13, 15 and
35). Two cases are possible: either the linear function to
the right of the first V-point, RF1, and the linear function
to the left of the second V-point, LF2, overlap or they in-
tersect. In case of overlap, the linear piece between the two
points must be a piece of Asd(t) (Lines 16 and 17). If RF1

and LF2 intersect, we add the intersection point to a stack
(Lines 19-21). Here, either there is a linear piece below the
intersection point that prevents it from being on the final
solution or the intersection point is on Asd(t). In the first
case, we find the linear piece with the greatest slope and
add two new intersection points to the stack (Lines 29-33).
If the intersection point is on the final solution (Lines 24-
27) we add the linear piece on RF1 between the first V-point
and the intersection point to Asd(t). Line 34 adds the linear
piece to the left of the right V-point. Finally, in Line 36, we
add an unbounded linear piece if the last linear function is
unbounded.

Theorem 1. Given a source node s and destination node

d, the TDSP algorithm outlined above correctly determines

Asd(t) for all t ∈ [0,∞).
Proof: The algorithm first finds all V-points on Asd(t)

along with linear pieces to the left and right of each V-point.

4

Algorithm 1: TDSP (G, V, E, s, d)

begin1

Asd(t)← NULL2

for every edge e = (v, w) ∈ E do3

for i = 0 to λe do4

LST ← SPbackward(v, s, T i

e
)5

EAT ← SPforward(v, d, T i

e
)6

TMP ← SPforward(s, d, LST)7

if EAT = TMP then8

fl ← GSEATfunction(s, d, LST)9

fr ← SSEATfunction(s, d, LST)10

InsertToList(L, {LST, EAT, fl, fr})11

Sort(L)12

{LST1, EAT1, LF1, RF1} ← RemoveItem(L)13

while NotEmpty(L) do14

{LST2, EAT2, LF2, RF2} ← RemoveItem(L)15

if Overlap(RF1, LF2) then16

AddLinearPiece(Asd(t), RF1, LST1, LST2)17

else18

(PX1, PY1)← (LST1, EAT1)19

(PX2, PY2)← IntersectionPoint(RF1 , LF2)20

Push(S, (PX2, PY2, RF1, LF2))21

while NotEmpty(S) do22

(PX2, PY2, fl, fr)← Pop(S)23

TMP ← SPforward(s, d, PX2)24

if TMP = PY2 then25

AddLinearPiece(Asd(t), fl, PX1, PX2)26

PX1 ← PX227

else28

fm ← GSEATfunction(s, d, PX2)29

(IX1, IY1)← IntersectionPoint(fl , fm)30

(IX2, IY2)← IntersectionPoint(fm , fr)31

Push(S, (IX2, IY2, fm, fr))32

Push(S, (IX1, IY1, fl, fm))33

AddLinearPiece(Asd(t), fr , PX2, LST2)34

{LST1, EAT1, LF1, RF1} ←35

{LST2, EAT2, LF2, RF2}

if EAT1 6=∞ then36

AddLinearPiece(Asd(t), RF1, LST1,∞)

return (Asd(t))37

end38

By Lemma 1, no V-points other than those considered can
be on Asd(t). Then, the algorithm picks every two consec-
utive V-points to compute all X-points between them. Let
vl = (xl, yl) and vr = (xl, xr) be two consecutive V-points
on Asd(t). Also, suppose that RF and LF are the linear
pieces to the right of vl and to the left of vr, respectively.
Either RF and LF overlap or they intersect. If overlap, the
linear piece on RF (or LF) from xl to xr is part of the so-
lution function since no other V-points are possible between
vl and vr. On the other hand, if the two functions intersect
in some point I = (xI , yI) and the intersection is on Asd(t),
then the linear piece on RF from xl to xI is on Asd(t) since
no other V-points are possible between vl and vr. If I is not
on Asd(t), then there must be another linear piece prevent-
ing it from being on the solution. The algorithm determines
such a piece with maximum slope. The extension of the lin-
ear piece must intersect both RF and LF since otherwise
there must be another V-point between vl and vr. Let Il

and Ir be the two intersection points. We now recursively
perform what we did for I , first for Il and then Ir. Starting
from vl, we add linear pieces to the solution function once Il

is found to be on Asd(t). Then, we move to the next inter-
section. As a last step, the algorithm adds to the solution
function the last piece on LF between the last intersection
and xr. Since we verify every X-point for being on Asd(t)
and no more V-points are possible between two consecutive

V-points, the algorithm finds all X-points. Since V-points
and X-points are the only change points on Asd(t), Algo-
rithm TDSP correctly finds all linear pieces of Asd(t). �

Theorem 2. The time complexity of the TDSP algorithm

outlined above is O((Fd + λ)(|E| + |V | log |V |)) .

Proof: First, the algorithm executes a slightly modified

version of Dijkstra’s shortest path algorithm both forward
and backward for each edge of the graph to find all pos-
sible V-points. It then executes another modified version
of Dijkstra’s algorithm to find greatest and smallest slope
pieces close to each V-point. Supposing that for every edge
(v, w) and a given starting time at v we can compute the ar-
rival time at w in O(1) time, for a given starting time at s,
the earliest arrival time at d is computed in the same time
as Dijkstra’s algorithm, namely O(|E| + |V | log |V |) using
Fredman and Tarjan’s implementation [13]. Consequently,
the time-complexity of the first part is O(λ(|E|+|V | log |V |))
where λ is the total number of linear pieces in all edge arrival
time functions. Then, in the second part, the algorithm ex-
ecutes a modified Dijkstra’s algorithm as many time as we
find intersection points. At each intersection point found,
we determine the linear piece with greatest slope that hides
the intersection point. This guarantees that, every time we
run a modified Dijkstra’s algorithm at the intersection point
we obtain a new linear piece which is part of the solution
Asd(t). As a result, we will execute the modified Dijkstra’s
algorithm at most as many times as there are X-points on
Asd(t). With Fd defined as the number of linear pieces on
Asd(t), the second part runs in time O(Fd(|E|+|V | log |V |)).
Hence, the total time complexity of the TDSP algorithm is
O(Fd + λ)(|E| + |V | log |V |)) �

5. AN APPROXIMATION ALGORITHM
FOR INSTANCES WITH
SUPER-POLYNOMIAL SIZE OUTPUT

We now present an approximation algorithm for instances
where the output size Fd might be super-polynomial. Our
method computes for all possible starting times t ∈ [0, T] at
s the earliest arrival times at d within error at most ǫ. The
algorithm runs in time O(∆

ǫ
(|E| + |V | log |V |)) where ∆ is

the earliest arrival time at d for the latest possible starting
time at s. In Section 3, we showed that the number of V-
points on Asd(t) is bounded by λ, the total number of linear
pieces in all edge arrival time functions of the network (in-
put size). Hence, for instances where the output size Fd is
super-polynomial, it follows that the number of X-points on
Asd(t) must be super-polynomial. Our approximation algo-
rithm first computes all V-points on Asd(t) as outlined in the
previous section. Then, for every two consecutive V-points
vl = (xl, yl) and vr = (xr, yr) we compute an approxima-
tion of Asd(t). If yr − yl ≤ ǫ we simply connect vl and vr

through a linear piece. If yr − yl > ǫ we calculate the static
shortest path backward from d to s at time ym = yl+yr

2
and

obtain a point vm = (xm, ym) on Asd(t). We recursively
perform this splitting operation until the difference between
arrival times is less than ǫ. As a final step, we connect all
points obtained (V-points plus new points) through linear
pieces. With ∆ = Amax − Amin defined as the difference
between the earliest arrival times Amin = Asd(t = 0) and
Amax = Asd(t = T), the time complexity of this algorithm
is O((∆

ǫ
+ λ)(|E| + |V | log |V |)). We can improve this time

5

complexity to O((∆

ǫ
)(|E|+ |V | log |V |)) by avoiding the cal-

culation of the V-points altogether. We calculate the static
shortest paths backwards from d to s at all times Amin + iǫ,
i = 1, . . . , ⌊∆

ǫ
⌋, and then connect the points obtained by

linear pieces. Here, the main complication is the possibility
of discontinuities in Asd(t). Handling this case within the
same time complexity is possible.

6. CONCLUSION
In this paper, we presented a new algorithm which solves

the time-dependent shortest paths problem for a time-
dependent network with FIFO property. The running time
of our algorithm is O((Fd+λ)(|E|+|V | log |V |)), where Fd is
the output size and λ is the input size. Our method improves
significantly on the best previously known bound by Orda
and Rom [15]. We also study instances where the output
size Fd is super-polynomial, for which all previously known
methods (including our first method presented here) require
super-polynomial time. We present the first approximation
method for such instances of the time-dependent shortest
path problem. Our method computes for all possible start-
ing times the earliest arrival times within error at most ǫ.
Our algorithm runs in time O(∆

ǫ
(|E|+ |V | log |V |)) where ∆

is the difference between the earliest arrival times at d for
the latest and earliest starting times at s. The methods pre-
sented in this paper are independent of the underlying static
shortest path algorithm, so that more efficient shortest path
algorithms than the generic Dijkstra algorithm can be used
when applicable. E.g., in planar networks, applying linear
time shortest path algorithms [14] will further improve our
results. In many practical networks heuristics such as A∗

can be applied to improve the practical performance of our
methods. We are currently implementing our algorithm.

7. ACKNOWLEDGEMENT
We thank Rolf Klein and Florian Berger for insightful dis-

cussions on this topic.

8. REFERENCES
[1] Ravindra K. Ahuja, James B.Orlin, Stefano

Pallottino, and Maria G.Scutella. Dynamic shortest
paths minimizing travel times and costs. Networks,
41:205, 2001.

[2] Ravindra K. Ahuja, James B. Orlin, Stefano
Pallottino, and Maria Grazia Scutellà. Minimum time
and minimum cost-path problems in street networks
with periodic traffic lights. Transportation Science,
36(3):326–336, 2002.

[3] Richard Bellman. On a routing problem. Quarterly of

Applied Mathematics, 16:87–90, 1958.

[4] Gerth Stølting Brodal and Riko Jacob.
Time-dependent networks as models to achieve fast
exact time-table queries. Electr. Notes Theor.

Comput. Sci., 92:3–15, 2004.

[5] Patricia June Carstensen. The complexity of some

problems in parametric linear and combinatorial

programming. PhD thesis, University of Michigan,
1983.

[6] Hae Don Chon, Divyakant Agrawal, and Amr El
Abbadi. Fates: Finding a time dependent shortest
path. In MDM ’03: Proceedings of the 4th

International Conference on Mobile Data

Management, pages 165–180, London, UK, 2003.
Springer-Verlag.

[7] K. L. Cooke and E. Halsey. The shortest route
through a network with time-dependent internodal
transit times. Journal of Mathematical Analysis and

Applications, 14(3):493–498, 1966.

[8] Carlos F. Daganzo. Reversibility of the
time-dependent shortest path problem. Transportation

Research Part B: Methodological, 36(7):665–668,
August 2002.

[9] Brian C. Dean. Shortest paths in FIFO
time-dependent networks: Theory and algorithms.
Technical report, MIT Department of Computer
Science, 2004.

[10] Frank. Dehne, Masoud T. Omran, and Jorg-R. Sack.
Minimum travel time on networks with
time-dependent edge availabilities. Technical report,
Carleton University, Ottawa, 2009.

[11] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1(1):269–271,
December 1959.

[12] Bolin Ding, Jeffrey Xu Yu, and Lu Qin. Finding
time-dependent shortest paths over large graphs. In
EDBT ’08: Proceedings of the 11th international

conference on Extending database technology, pages
205–216, New York, NY, USA, 2008. ACM.

[13] Michael L. Fredman and Robert Endre Tarjan.
Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM, 34(3):596–615,
1987.

[14] Monika Rauch Henzinger, Philip N. Klein, Satish Rao,
and Sairam Subramanian. Faster shortest-path
algorithms for planar graphs. J. Comput. Syst. Sci.,
55(1):3–23, 1997.

[15] Ariel Orda and Raphael Rom. Shortest-path and
minimum-delay algorithms in networks with
time-dependent edge-length. J. ACM, 37(3):607–625,
1990.

[16] Micha Sharir and Pankaj K. Agarwal.
Davenport-Schinzel sequences and their geometric

applications. Cambridge University Press, New York,
NY, USA, 1996.

6

Fuel-cache site-selection for polar research:

A Summary of Results
Mark Dietz

Department of Computer Science
University of Minnesota

mdietz@cs.umn.edu

Shashi Shekhar
Department of Computer Science

University of Minnesota

shekhar@cs.umn.edu

ABSTRACT

Scientists conducting polar research in Antarctica must

contend with harsh environmental conditions that constrain their

movements and raise their costs. One on going challenge is

choosing cache sites for aircraft refueling. Given a data-gathering

mission (e.g. set of flight destinations), aircraft fuel-consumption

model, and infrastructure (e.g. base and cache-sites), the Fuel-

Cache Site-Selection (FCSS) problem identifies the optimal use of

cache sites to fulfill the mission. The FCSS problem is important

for planning expeditions in infrastructure-poor areas for scientific

or military purposes. However, the FCSS problem is

computationally challenging due to interaction across different

flight-routes. Related approaches from literature concerning

routing are inadequate due to assumptions about the cost of

providing infrastructure. This paper proposes heuristics and a

filter-and-refine based exact algorithm, evaluation using analytical

and experimental methods, and a case study with end-users, e.g.

polar scientists.

Categories and Subject Descriptors

I.2.1 [Applications and Expert Systems]: Route Finding

General Terms

Algorithms

Keywords

Routing, Assignment, Optimization.

1. INTRODUCTION
Scientists conducting polar research in Antarctica must

contend with harsh environmental conditions that constrain their

movements and raise their costs. One on going challenge is

choosing cache sites for aircraft refueling. Given a data-gathering

mission (e.g. set of flight destinations), aircraft fuel-consumption

model, and infrastructure (e.g. bases and cache-sites), the Fuel-

Cache Site-Selection (FCSS) problem identifies the optimal use of

infrastructure to fulfill the mission. Each destination must be

visited by a separate flight due to the amount of time that must be

spent at each destination and constraints on the total time spent in

the field. Thus a solution to the FCSS problem specifies a path

from the home point to the flight destination and back to the home

point. Some points can be reached directly. Others require a

refueling stop, which can only be made at predefined cache-sites.

All fuel taken from the cache-sites must first be placed there by a

separate refueling flight. Therefore the FCSS problem consists of

minimizing the fuel consumption of two types of flights: research

flights to the specified destinations of interest and refueling flights

to place fuel at the cache sites in support of the research flights.

The FCSS problem is important for planning expeditions in

infrastructure-poor areas for scientific or military purposes. The

logistics costs for supporting these missions are very high due to

the cost incurred establishing the necessary infrastructure to

support the mission. There is much value in reducing these costs.

However, the FCSS problem is computationally challenging

due to interaction across different flight-routes. The choice of

refueling site for a particular research point may vary based on

whether there is left over fuel from a previous refueling flight at

any of the cache sites.

Related Work: Prior research on problems similar to FCSS falls

into two categories: vehicle routing with fuel constraints and

multi-depot vehicle routing.

Research into vehicle routing with fuel constraints ([1] and

[2]) attempts to find the least cost path between two points in a

graph for a vehicle with a limited fuel tank capacity. The vehicle

must stop to refuel at designated refueling stations. The graph

edges are weighted by the fuel required and each refueling station

is a node on the graph with a fixed fuel price.

Multi-depot vehicle routing ([3], [4], [5], [6], [7], [8], [9],

[10], [11], [12], [13], [14] and [15]) is the problem of transporting

materials to customers using a number of depots. Customers are

assigned a depot and vehicles are routed to satisfy the customers’

demands while attempting to minimize the costs of fuel, vehicles

and drivers.

In the FCSS problem, the fuel cache sites take the role of the

refueling stations or depots and the research points take the role of

the destination points or customers. However, the approaches in

the literature assume the cost of choosing a cache site for a

research point is independent of the other research points using

that site. In FCSS, the cost of fuel at the fuel cache site is the cost

to transport the fuel there. This cost varies based on which

research points are assigned to that fuel cache.

Our Contributions: This paper defines the fuel cache site

selection problem (FCSS). We believe the problem is NP-hard

due to similarities with other routing problems and propose two

heuristics. The paper also provides an algorithm to find the

optimal solution using properties of the problem to filter the

possible cache site choices for each research point and performing

an exhaustive search of the remaining choices. Finally, it presents

a case study showing how these solution methods combined with

a visualization tool (Google Earth) can be used by human planners

to assess the fuel cost impacts of adding a new cache site or

removing an existing site.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. IWCTS `09 November 3,

2009, Seattle, WA, USA. Copyright © 2009

ACM ISBN 978-1-60558-861-2.... $10.00

7

Outline: The rest of the paper is organized as follows. Section 2

formally defines FCSS and provides an example. Section 3

presents our methods for solving the selection problem. Section 4

shows an analytical and experimental comparison between the

solution methods on real and synthetic data. Section 5 discusses

our conclusions.

2. PROBLEM DEFINITION

2.1 Definitions
Definition 2.1.1: Aircraft model – We assume the aircraft used

for all flights can be specified by the following model:

 Maximum Fuel Capacity

 Fuel Burned per Mile

 Minimum Fuel Reserve

 Base Operational Weight: weight of the aircraft and

crew without cargo, passengers, or fuel

 Maximum Operational Weight: weight of the aircraft

plus crew, cargo, passengers, and fuel

Definition 2.1.2: 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑝 : fuel cost for a round trip from

home point ℎ to point 𝑝 – either a cache site or a research point.

Definition 2.1.3: 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗 : fuel cost for a round trip

from home point ℎ to research point 𝑟𝑖 using fuel cache 𝑐𝑗 to

refuel.

Definition 2.1.4: 𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗 : fuel cost to place enough

fuel at cache 𝑐𝑗 to support a round trip research flight to 𝑟𝑖 that

uses 𝑐𝑗 to refuel. For example, if the research flight to 𝑟𝑖 needs to

take 1000 lbs of fuel from the site 𝑐𝑗 and the maximum payload

for a refueling flight to 𝑐𝑗 is 800 lbs, then 𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗 is

twice 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑐𝑗 .

2.2 Formal Problem Definition
Given:

 A single home point ℎ represented by latitude /

longitude coordinates.

 Set 𝐶 = 𝑐1 , 𝑐2, … , 𝑐𝑚 of fuel cache sites represented as

latitude / longitude coordinates.

 Set 𝑅 = 𝑟1, 𝑟2, … , 𝑟𝑛 research points of interest

represented as latitude / longitude coordinates.

 Aircraft model.

Find:

 For every 𝑟𝑖 ∈ 𝑅 find a feasible path from ℎ to 𝑟𝑖 and

back to ℎ. The feasible path contains no other research

points and at most one stop to refuel at a site 𝑐𝑖1 ∈ 𝐶 en

route from ℎ to 𝑟𝑖 and at most one stop to refuel at

𝑐𝑖2 ∈ 𝐶 en route from 𝑟𝑖 to ℎ.

 The amount of fuel to place at each cache site.

 The number of refueling flights needed to place fuel at

each cache site.

Objective:

 Minimize the total fuel consumed by the research flights

(flights to the points in R) and the refueling flights

(flights to the cache sites in C to deposit the fuel used to

refuel during the research flights).

Constraints:

 All refueling is performed at ℎ or a point in C.

 h is assumed to be an infinite fuel source.

 All fuel taken from a site 𝑐𝑖 ∈ 𝐶 must be flown from ℎ

to 𝑐𝑖 using a refueling flight.

 A flight is either a refueling flight for placing fuel or

research flight for visiting a research point, not both.

 Refueling flights carry fuel in drums of a specified size

and weight. For example, each drum weights 400 lbs

and contains 350 lbs of fuel.

 Sites in C have the capacity to store an infinite number

of fuel drums.

2.3 Example
Figure 1 shows an example problem instance with

𝑅 = 𝑟1, 𝑟2, 𝑟3, 𝑟4 and 𝐶 = 𝑐1, 𝑐2, 𝑐3 . In this example, 𝑟1 is close

enough to ℎ to be reached directly without stopping to refuel. 𝑟2

can only be reached by refueling at 𝑐1 on the outbound flight and

refueling at 𝑐1 again on the home bound flight. Therefore these

assignments must be included in any optimal solution. The only

choices to be made for this problem instance are selecting cache

sites for 𝑟3 and 𝑟4. Point 𝑟3 can be visited with just one stop to

refuel at either 𝑐2 (closest) or 𝑐3 (a little farther), but 𝑐1 is too far

away. Point 𝑟4 can be visited with just one refuel stop at 𝑐3

(closest) or 𝑐2 (a little farther). It can also be reached by refueling

at 𝑐1, but at a much larger cost. Table 1 shows the costs for 𝑟3 and

𝑟4 for assignments to 𝑐2 and 𝑐3.

Figure 1: Example of cache selection problem with four

research points and three fuel caches. Circle indicates

maximum round trip flight range without refueling.

Table 1: Feasible solutions for r3 and r4 in example problem

Solution #
Research

Point

Cache

site to

refuel

Fuel consumed

by research

flights

Total Plan

for r3, r4 Cost

With Fuel

Placement

1 r3 c2 2807
9090

1 r4 c3 2774

2 r3 c2 2807
9590

2 r4 c2 3245

3 r3 c3 2850
7364

3 r4 c3 2774

4 r3 c3 2850
9534

4 r4 c2 3245

Table 1 shows that Solution #1 optimizes the fuel consumed

by the flights to the research points and would be the best choice

if there were no cost for fuel placement. However, Solution #3 is

the optimal solution when fuel placement costs are considered. In

Solution #3, fuel placement costs are lower because fuel needs to

be placed at only one location to support 𝑟3 and 𝑟4 thus allowing

consolidation of refueling flights. Note Solution #2 also chooses

the same site for 𝑟3 and 𝑟4, but these flights require more fuel to

be placed at 𝑐2 than can be carried in one refueling flight so two

refueling flights are necessary.

8

2.4 Contrast FCSS Routing with other Routing
In many routing problems, such as the Traveling Salesman

Problem, a route must be found that can visit many points of

interest. By contrast in FCSS we must find a separate route from

the home point to each point of interest and back to the home

point. The route cannot include any other research points. This

constraint arises from real world conditions in polar research.

Scientists visiting a research point must spend several hours

taking measurements and installing sensors. There is no time to

visit a second research point in a day and Antarctica’s

inhospitable climate makes an overnight stay in the field

impossible. Other problems that would include this constraint are:

 an installation task where the vehicle can carry the materials

for only one installation at a time

 a research task where the tools needed are very specific to

the particular task and so not all tools can be carried at once

 a transportation task where vehicle capacity is limited to the

items for one customer

3. CACHE SELECTION METHODS
Due to the belief that this problem is NP-hard, there is not

likely a scalable algorithm to find an exact solution. We present

two heuristics and one exact algorithm for solving the FCSS

problem as presented in section 2.2. The first step of each is to

identify any research points that are close enough to the home

point ℎ to not need a refueling stop at a cache site. These points

are assigned a direct flight and then ignored. Even though we

have shown that finding the globally optimal solution requires the

cache selections to be interdependent, the heuristics each make

different assumptions that allow the selections to be treated

independently. The exact algorithm identifies bounds on the

solution and filters out choices that do not fit within these bounds.

It then performs an exhaustive search of the remaining choices.

Once assignments are made, all three methods tally the total fuel

required at each cache site and assign the minimum number of

refueling flights needed to place the fuel at each cache site. This

allows some refueling flights to be consolidated. However, only

the exhaustive search considers the gains from consolidating

refueling flights when making the cache site selections.

3.1 Heuristic: Research Flights Only
Figure 3 shows pseudo-code for the Research Flights Only

heuristic. This heuristic is the most similar to the current manual

process for solving the FCSS problem. For each research point

𝑟𝑖 ∈ 𝑅, the heuristic chooses the cache 𝑐𝑗 ∈ 𝐶 that minimizes

𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 𝑟𝑖 , 𝑐𝑗 . Ignoring the cost of fuel placement will provide

an under estimate of the total fuel required to visit a research

point. When executed with the input from example 2.3 this

heuristic gives Solution #1 from Table 1. An execution trace

follows:

 Only 𝑟1 can be reached directly from ℎ. Assign a direct

flight for 𝑟1.

 𝑟2 can only be reached by refueling at 𝑐1. Assign 𝑐1 to 𝑟2.

 𝑟3 can be reached by refueling at 𝑐2 with

𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟3, 𝑐2 = 2807 or 𝑐3 with 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟3, 𝑐3 =
2850. Assign 𝑐2 to 𝑟3.

 𝑟4 can be reached by refueling at 𝑐1 with

𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐1 = 3462 or 𝑐2 with 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐2 =
3132 or 𝑐3 with 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐3 = 2774. Assign 𝑐3 to

𝑟4.

 The amount of fuel needed at each site is: 𝑐1 = 2213 lbs.,

𝑐2 = 357 lbs., and 𝑐3 = 394 lbs.

 Refueling flights to 𝑐1 can deposit a maximum of 700 lbs. of

fuel per flight so 𝑐1 requires 4 refueling flights.

 Refueling flights to 𝑐2 can deposit a maximum of 1050 lbs.

of fuel per flight so 𝑐2 requires 1 refueling flight.

 Refueling flights to 𝑐1 can deposit a maximum of 1400 lbs.

of fuel per flight so 𝑐1 requires 1 refueling flight.

 The total cost is 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟1 + 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟2, 𝑐1 +
4 × 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑐1 + 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟3, 𝑐2 +
𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑐2 + 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐3 + 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑐3 =
24681

Figure 3: Pseudo-code for Research Flights Only

3.2 Heuristic: Independent Refueling Flights
Figure 4 shows pseudo-code for the Independent Refueling

Flights heuristic. For each research point 𝑟𝑖 ∈ 𝑅, this heuristic

chooses the cache 𝑐𝑗 ∈ 𝐶 that minimizes 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗 +

𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗 . The cache selection does not take into

account any opportunity for combining flights to place fuel at

cache sites. This is not optimal because if the fuel needed for

research flights to two research points that use the same cache can

be supported with only one refueling flight, the cost will be

counted against both research flights when evaluating alternatives.

When executed with the input from example 2.3 this heuristic

gives Solution #1 from Table 1. Note that while in this case

Independent Refueling Flights chooses the optimal solution, this

is not the case in general. An execution trace follows:

Figure 4: Pseudo-code for Independent Refueling Flights

 Only 𝑟1 can be reached directly from ℎ. Assign a direct

flight for 𝑟1.

 𝑟2 can only be reached by refueling at 𝑐1. Assign 𝑐1 to 𝑟2.

 𝑟3 can be reached by refueling at 𝑐2 with

𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟3, 𝑐2 + 𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟3, 𝑐2 = 4575 or 𝑐3

with 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟3, 𝑐3 + 𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟3, 𝑐3 = 4520.

Assign 𝑐3 to 𝑟3.
 𝑟4 can be reached by refueling at 𝑐1 with 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 𝑟4, 𝑐1 +

𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐1 = 8090 or 𝑐2 with 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 𝑟4, 𝑐2 +

IndependentRefuelingFlights {

 foreach ri in {r1,…,rn} {

 minFuelCostIncludingRefueling = ∞;

 foreach cj in {c1, …, cm}{

 if(fuelCost(h,ri,cj)

 + refuelingCost(h,ri,cj)

 < minFuelCostIncludingRefueling)

 minFuelCostIncludingRefueling =

 fuelCost(h,ri,cj)

 + refuelingCost(h,ri,cj);

 cacheSiteAssignment[ri] = cj;

 return cacheSiteAssignment[];

}

ResearchFlightsOnly {

 foreach ri in {r1,…,rn}

 minFuelCost = ∞;

 foreach cj in {c1, …, cm}

 if(fuelCost(h,ri,cj) < minFuelCost)

 minFuelCost = fuelCost(h,ri,cj);

 cacheSiteAssignment[ri] = cj;

 return cacheSiteAssignment[];

}

9

𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐2 = 5014 or 𝑐3 with 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 𝑟4, 𝑐3 +
𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐3 = 4514. Assign 𝑐3 to 𝑟4.

 The amount of fuel needed at each site is: 𝑐1 = 2213 lbs.,

𝑐2 = 0 lbs., and 𝑐3 = 794 lbs.

 Refueling flights to 𝑐1 can deposit a maximum of 700 lbs. of

fuel per flight so 𝑐1 requires 4 refueling flights.

 𝑐2 supplies no fuel so needs no refueling flights.

 Refueling flights to 𝑐1 can deposit a maximum of 1400 lbs.

of fuel per flight so 𝑐1 requires 1 refueling flight.

 The total cost is 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟1 + 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟2, 𝑐1 +
4 × 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑐1 + 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟3, 𝑐3 +
𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐3 + 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑐3 = 22955

3.3 Algorithm: Exhaustive Search With Filter
Figure 5 shows pseudo-code for the Exhaustive Search With

Filter algorithm. This algorithm finds the upper bound for the

total fuel consumption contribution for each research point and a

lower bound for the fuel consumption contribution for the

assignment of each cache site to each research point. These are

shown in Lemma 3.3.1 and 3.3.2

Lemma 3.3.1: The upper bound on the fuel cost contribution for

𝑟𝑖 is the amount of fuel required to visit 𝑟𝑖 without considering

other research points:

𝑀𝐼𝑁𝐼𝑀𝑈𝑀 ∀𝑐𝑗 ∈ 𝑐𝑎𝑐ℎ𝑒𝑠 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗 + 𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗

Proof: Suppose there exists an optimal solution S where the

contribution from 𝑟𝑖 is greater than the proposed upper bound.

Construct S’ by replacing the flight to 𝑟𝑖 and supporting refueling

flights in S with a flight to 𝑟𝑖 using 𝑐𝑗 to refuel and supporting

refueling flights. Then the total cost of S’ is less than the total

cost of S, a contradiction. Thus the contribution from 𝑟𝑖 in the

optimal solution S is less than the proposed upper bound.

Lemma 3.3.2: Lower bound on fuel cost contribution for 𝑟𝑖 using

cache site 𝑐𝑗 is 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗 + 𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗 −

𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡(ℎ, 𝑐𝑗) . This is the lower bound because there is at most

one refueling trip’s payload of fuel left over at 𝑐𝑗 from refueling

trips to support other research points. Thus refueling at the same

site as other research flights saves at most one refueling flight.

Using the upper bound of 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗 +

 𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗 we form the list of possible assignments for

each 𝑟𝑖 ∈ 𝑅. A cache 𝑐𝑗 ′ is removed from the list of possible

assignments if its lower bound 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗 ′ +

𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗 ′ − 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡(ℎ, 𝑐𝑗 ′) is higher than the upper

bound 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗 + 𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟𝑖 , 𝑐𝑗 . Then all

combinations of the choices are examined to find the optimal

solution. When executed with the input from example 2.3, this

algorithm gives Solution #1 from Table 1. An execution trace

follows:

 Only 𝑟1 can be reached directly from ℎ. Assign a direct

flight for 𝑟1.

 𝑟2 can only be reached by refueling at 𝑐1. Assign 𝑐1 to 𝑟2.

 The maximum contribution from 𝑟3 (Lemma 3.3.1) is

𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟3, 𝑐3 + 𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟3, 𝑐3 = 4520.

 The minimum contribution from 𝑟3 with 𝑐2 (Lemma 3.3.2) is

𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟3, 𝑐2 + 𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟3, 𝑐2 −
𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑐2 = 2807 < 4520. 𝑐2 cannot be filtered, so

optimal selection for 𝑟3 is in {𝑐2, 𝑐3}.

 The maximum contribution from 𝑟4 is 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐3 +
𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐3 = 4514.

 The minimum contribution from 𝑟4 with 𝑐1 is

𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐1 + 𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐1 −
𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑐1 = 5776 > 4514. 𝑐1 can be filtered.

 The minimum contribution from 𝑟4 with 𝑐2 is

𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐2 + 𝑟𝑒𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐2 −
𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑐2 = 3245 < 4514. 𝑐2 cannot be filtered so

optimal selection for 𝑟4 is in {𝑐2, 𝑐3}.

 All solutions are equal except for the choice of cache for 𝑟3

and 𝑟4. Table 1 enumerates costs contributed by 𝑟3 and 𝑟4 for

all combinations, so exhaustive search chooses 𝑐3 for both 𝑟3

and 𝑟4.

 The total cost is 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟1 + 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟2, 𝑐1 +
4 × 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑐1 + 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟3, 𝑐3 +
𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑟4, 𝑐3 + 𝑓𝑢𝑒𝑙𝐶𝑜𝑠𝑡 ℎ, 𝑐3 = 22955

Figure 5: Pseudo-code for Exhaustive Search With Filter

4. Analysis
We evaluated the methods analytically, experimentally against

synthetic datasets of different sizes, and experimentally against a

real world dataset provided by the Antarctica Geospatial

Information Center (AGIC).

4.1 Analytical

4.1.1 Correctness
The solutions provided by the Research Flights Only and

Independent Refueling Flights heuristics are guaranteed to be

feasible because each starts with no selections for any research

point and only makes selections where the cost is not infinite (line

5 in Figures 3 and 4). This means all selections made by the

heuristic are feasible.

The solutions given by the Exhaustive Search With Filter

algorithm are guaranteed to be feasible because it starts with no

selections for any research point and all infeasible selections are

filtered by the bounding process (line 5 in Figure 5).

4.1.2 Computational Complexity
It is easy to see that the heuristics – Research Flights Only

and Independent Refueling Flights – each execute in 𝑂(𝑅 × 𝐶)

time for all cases. Each possible cache site is examined once for

each possible research point.

The worst case execution time for Exhaustive Search With

Filter is 𝑂(𝐶 𝑅) . Line 8 in Figure 5 is the non-polynomial part

of the algorithm because it must examine all combinations of

assignments. In the worst case, the filter is unable to rule out any

cache site for any research point. However, if the filter is able to

rule out many of the cache site choices, then the execution time

can be cut down substantially. In the best case for execution time,

the filter eliminates all but one choice for each research point,

allowing the Exhaustive Search With Filter to execute in 𝑂(𝑅 ×
 𝐶) time. The average case however remains 𝑂(𝐶 𝑅).

ExhaustiveSearchWithFilter {

 foreach ri in {r1,…,rn}

 computeUpperBound[ri]

 foreach cj in {c1,…,cm}

 if(fuelCost(h,ri,cj) > upperBound(ri))

 removePossibleAssignment(ri,cj)

 examineCombinationsOfPossibleAssignments

 return optimalAssignment

}

10

4.2 Experimental Analysis
Synthetic problem instances were generated in order to

compare the heuristics and the exact algorithm in terms of overall

solution quality for problems with varying numbers of research

points and fuel cache sites. Figure 6 shows the overall evaluation

process. First random research points were selected in an area

around a home point. Points within range of a direct flight from

the home point were excluded. Cache sites were selected such

that at least half of the research points could be reached from each

cache site. Finally any research points that were not reachable

from any cache site were removed and replaced with random

points that were reachable from at least one cache site and not

reachable from the home point directly. These restrictions on the

synthetic data allowed the size of the data set to correspond to the

number of alternatives the algorithm must evaluate.

Figure 6: Experiment Design

The first experiment ran all three methods against problems

with 2 cache sites and 10 – 20 research points. We ran 30 trials

for each problem size. Figure 7 shows the percentage of the total

cost contributed by refueling for the solutions. This is the cost

divided by the total fuel required to visit all research points using

the nearest fuel cache. Table 2 shows the average execution times

over the trials. The run time of the exact algorithm was very

volatile. The execution time for trials with 20 research points

varied from 0.02 sec to 20 hours. Figure 7 and Table 2 show the

Exhaustive Search With Filter provides the highest quality

solutions, but it also has considerably longer execution times.

Figure 7: Percentage fuel costs contributed by refueling for

problems with 2 fuel cache sites and 10 - 20 research points.

Table 2: Execution time for datasets in Figure 7

Method
Average Execution Time

10 points 15 points 20 points

Research Flights Only 0.001 s 0.003 s 0.005 s

Independent Refueling Flights 0.003 s 0.050 s 0.063 s

Exhaustive With Filter 0.1728 s 22.7 s 1 hour

We further evaluated the two heuristics against larger

synthetic datasets in order to characterize the quality of their

solutions. The first heuristic evaluation used 4 cache sites with

the number of research points varying from 10 to 100. We ran

1000 trials for each problem size. Figure 8 shows the percentage

of the total cost contributed by refueling. The exhaustive search

algorithm was not able to consistently finish in a reasonable time

on problems of this size.

Figure 8: Percentage fuel costs contributed by refueling for

problems with 4 fuel cache sites and 10 - 100 research points.

The second heuristic evaluation used 50 research points with

the number of fuel cache sites varying from 2 to 10. We ran

1000 trials for each problem size. Figure 9 shows the percentage

of the total cost contributed by refueling. Figure 9 shows that the

Independent Refueling Flights is better able to take advantage of

more fuel cache site choices than Research Flights Only. Figures

8 and 9 show that generally the Independent Refueling Flights

heuristic provides a better solution. However, there were cases

when the Research Flights Only heuristic provided a better

solution. Both heuristics execute efficiently so it is worthwhile to

try both to find solutions in an actual planning scenario.

Figure 9: Percentage fuel costs contributed by refueling for

problems with 60 research points and 2 - 10 fuel cache sites.

4.3 Case Study: AGIC
The Antarctica Geospatial Information Center provided a

dataset for an instance of the FCSS problem. The dataset

contained 26 research points, 3 existing fuel cache sites, and 2

proposed fuel cache sites. Sixteen research points were reachable

by a direct flight and two were not reachable even when using the

existing or proposed cache sites for refueling.

Currently AGIC evaluates proposed cache sites using two

Excel spreadsheets. One spreadsheet is used to calculate the

payload capacity and fuel consumption for a flight given its start,

destination, and refueling stops. This method provides no clues to

help the user determine which fuel cache site is a good choice for

accessing a research point. The second spread sheet is used to

tally the results and keep track of the amount of fuel required at

each of the cache sites.

15%

17%

19%

21%

23%

25%

27%

10 15 20

P
e
r
c
e
n

ta
g

e
 f

u
e
l

c
o

st
s

c
o

n
tr

ib
u

te
d

 b
y

 r
e
fu

e
li

n
g

Research Points

Research

Flights Only

Independent

Refueling

Flights

Exhaustive

Search With

Filter

18%

20%

22%

24%

26%

10 30 50 70 90P
e
r
c
e
n

ta
g

e
 f

u
e
l

c
o

st
s

c
o

n
tr

ib
u

te
d

 b
y

 r
e
fu

e
li

n
g

Research Points

Research

Flights Only

Independent

Flights

Refueling

Flights

15%

20%

25%

30%

35%

2 4 6 8 10P
e
r
c
e
n

ta
g

e
 f

u
e
l

c
o

st
s

c
o

n
tr

ib
u

te
d

 b
y

 r
e
fu

e
li

n
g

Cache Sites

Research

Flights Only

Independent

Refueling

Flights

Generate Problem Instance

Compare solution quality

Research
Flights Only

Independent
Refueling Flights

Exhaustive Search
With Filter

11

This process suffers from several deficiencies. First, even

with a given set of fuel cache sites, there is no help for choosing

which cache to assign to a research point. Second, adding a new

proposed cache site to the set of possible choices takes hours so

only a few possible new cache sites can be evaluated. Finally,

opportunities for consolidating refueling flights are missed due to

the difficulty of keeping track of the solution.

An automated solution to the FCSS problem, combined with

a visual representation of the problem, solves the deficiencies in

the current system. For the dataset provided by AGIC, the

Exhaustive Search With Filter was able to find a solution that

reduced the total fuel consumption by 10% compared to the

solution arrived at manually using the previous system. In

addition, many more alternative cache sites can be evaluated due

to the efficiency gained by solving the FCSS problem quickly.

Finally, by displaying the home point, research points, and fuel

cache sites in Google Earth, and presenting visual feedback on the

range of research and refueling flights, the user was able to

quickly identify good locations for candidate fuel caches sites and

then quickly evaluate the impact of a new site on the total fuel

consumption. Figure 10 shows a screenshot of the visual

representation of a flight plan. The circles show the range of a

round trip flight from the home point and from the fuel caches.

These let a user know where it is feasible to place a fuel cache

site. The lines connecting the points represent the flight path

chosen by the FCSS algorithm. This is either a direct flight from

the home point or a flight with a stop to refuel at a fuel cache.

Figure 10: The problem set provided by AGIC. The circles

around home and cache sites indicate the range of a flight

from those sites with the given payload.

5. Conclusions and Future Work
We have characterized the fuel cache site selection (FCSS)

problem and demonstrated the importance of the problem with

respect to polar research and other operations in infrastructure

poor regions. We proposed two heuristics and an exact algorithm.

We showed through synthetic and case study data that the

heuristics provide useful solutions when compared to the existing

methods of cache selection, and that both the heuristics and the

exact algorithm can find solutions to datasets that arise in practice.

Future work includes proving the FCSS problem is NP-hard,

characterizing the problem instances where each heuristic is more

effective, and finding better heuristics and alternate formulations

such as Mixed Integer Programming to facilitate more efficient

exact solutions. AGIC also wants to pursue algorithms to

recommend new cache sites given an instance of the FCSS.

6. ACKNOWLEDGMENTS
Special thanks to Paul Morin and Michelle LaRue from the

Antarctica Geospatial Information Center and to the research

scientists in Antarctica for their help identifying and defining the

FCSS problem. Thanks also to Kim Koffolt for improving the

readability of the paper. This work was supported by the National

Science Foundation and US Department of Defense.

7. REFERENCES
[1] Lin, S., Gertsch, N., Russell, J., 2007, A linear-time

algorithm for finding optimal refueling policies. Operations

Research Letters, 35, (3), 290-296

[2] Lin, S., 2008. Finding optimal refueling policies: a dynamic

programming approach, Journal of Computing Sciences in

Colleges, v.23 n.6, 272-279

[3] Wu, T.H., Low, C. and Bai, J.W. 2002. Heuristic solutions to

multi-depot location-routing problems. Computers &

Operations Research, v. 29, 1393-1415

[4] Avella, P., Boccia, M. and Sforza, A., Solving a fuel delivery

problem by heuristic and exact approaches. European Journal

of Operational Research. v152. 170-179.

[5] Cornillier F, Boctor FF, Laporte G and Renaud J. 2007. An

exact algorithm for the petrol station replenishment problem.

Journal of the Operational Research Society,

doi:10.1057/palgrave.jors.2602374.

[6] Giosa, I., Tansini, I. and Viera, I. 2002. New assignment

algorithms for the multi-depot vehicle routing problem.

Journal of the Operational Research Society. v53. 977-984.

[7] Nagy, G. and Salhi, S. 2005. Heuristic algorithms for the

single and multiple depot vehicle routing problems with

pickups and deliveries. European Journal of Operational

Research. v162. 126-141.

[8] Renaud, J., Laporte, G. and Boctor, F. 1996. A tabu search

heuristic for the multi-depot vehicle routing problem.

Computers & Operations Research. V23. 229-235,

doi:10.1016/0305-0548(95)O0026-P

[9] Laporte, G., Nobert, Y. and Taillefer, S. 1988. Solving a

Family of Multi-Depot Vehicle Routing and Location-

Routing Problems. Transportation Science. v22. 161

[10] Tuzun, D. and Burke, L. 1999. European Journal of

Operational Research. v116. 87-99. doi:10.1016/S0377-

2217(98)00107-6

[11] Parthanadee, P. and Logendran, R. 2006. Periodic product

distribution from multi-depots under limited supplies. IIE

Transactions. v38. 1009 – 1026

[12] Liu, S. and Lee, S. 2003. A two-phase heuristic method for

the multi-depot location routing problem taking inventory

control decisions into consideration. The International

Journal of Advanced Manufacturing Technology. v22. 941-

950. doi: 10.1007/s00170-003-1639-5

[13] Pisinger, D. and Ropke S. 2007. A general heuristic for

vehicle routing problems, Computers and Operations

Research v34. 2403–2435.

[14] Bard, J. F., Huang, L., Jaillet, P. and Dror, M. 1998. A

decomposition approach to the inventory routing problem

with satellite facilities. Transportation Science v32. 189-203.

[15] Wu T.-H., Low C., Bai J.-W. 2002. Heuristic solutions to

multi-depot location-routing problems. Computers and

Operations Research. v29. 1393-1415. doi:10.1016/S0305-

0548(01)00038-7

12

Towards Modeling the Traffic Data on Road Networks

Ugur Demiryurek, Bei Pan, Farnoush Banaei-Kashani and Cyrus Shahabi
Department of Computer Science
University of Southern California

Los Angeles, CA 90089
{demiryur,beipan,banaeika,shahabi}@usc.edu

ABSTRACT
A spatiotemporal network is a spatial network (e.g., road network)
along with the corresponding time-dependent weight (e.g., travel
time) for each edge of the network. The design and analysis of
policies and plans on spatiotemporal networks (e.g., path planning
for location-based services) require realistic models that accurately
represent the temporal behavior of such networks. In this paper, for
the first time we propose a traffic modeling framework for road net-
works that enables 1) generating an accurate temporal model from
archived temporal data collected from a spatiotemporal network (so
as to be able to publish the temporal model of the spatiotemporal
network without having to release the real data), and 2) augment-
ing any given spatial network model with a corresponding realistic
temporal model custom-built for that specific spatial network (in
order to be able to generate a spatiotemporal network model from
a solely spatial network model). We validate the accuracy of our
proposed modeling framework via experiments. We also used the
proposed framework to generate the temporal model of the Los An-
geles County freeway network and publish it for public use.

1. INTRODUCTION
The latest developments in online map services (e.g., Google

Maps) and their widespread usage in hand-held devices and car-
navigation systems have led to the recent prevalence of the location-
based services. Many of the location-based services rely on effi-
cient computation of the shortest path between a source and a desti-
nation in road networks. While the majority of the previous studies
(e.g., [16, 10, 12, 3]) simplistically assume the travel-time of each
segment of the network is constant, in reality the actual travel-time
of a segment heavily depends on the traffic flow on the segment;
hence, varies as a function of time. Recently, an increasing number
of studies [8, 4, 5] consider time-dependent shortest path compu-
tation in road networks. However, most of these studies resort to
using simplistic models and/or synthetic datasets to represent the
temporal aspect of the road networks, mainly because collecting
and working with real temporal data from road networks is costly
and difficult, and the available temporal datasets are often propri-
etary and cannot be released for public use. Obviously, inaccurate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWCTS ’09 November 3, 2009, Seattle, WA, USA.
Copyright c©2009 ACM ISBN 978-1-60558-861-2 ...$10.00.

temporal representation of road networks can seriously affect the
validity of the design and evaluation of any proposed path planning
technique for such networks; hence, the need for realistic models
for traffic flows in spatiotemporal networks.

In this paper, we propose a framework for realistic and accu-
rate modeling of traffic flows on road networks. The benefit of the
proposed framework is twofold. First, anyone (e.g., governmen-
tal agencies) in possession of a real traffic data collected from a
road network can use the proposed framework to derive and gen-
erate a realistic temporal model for the corresponding network, to
be shared for public use (e.g., for researchers and policy planners)
without infringing the copyright laws and jeopardizing the privacy
of the dataset. As an example, we have used the proposed frame-
work to generate and publish a realistic model for traffic flows in
all freeways of the Los Angeles County based on the real (and pro-
prietary) data provided to us by the county (see Section 4.1 for
more details about this dataset)1. Second, as we describe in Sec-
tion 4 (since the traffic in Los Angeles County is arguably typical
and generic) one can use the proposed framework to generate re-
alistic traffic flows specific to and customized for any given road
network; hence, transferring the road network model to its cor-
responding spatiotemporal network model. Towards this end, we
use a semi-supervised hierarchial clustering approach (based on the
spatial characteristics of the network) to generate the spatiotempo-
ral model of the network. To the best of our knowledge, our work
is the first attempt in generating realistic temporal models for road
networks.

The remainder of this paper is organized as follows. In Section
2 we review the related work. In Section 3 we provide the pre-
liminary definitions, and subsequently in Section 4 we establish
the theoretical foundation of our proposed traffic flow modeling
framework and discuss the three-phase modeling process of this
framework. In Section 5, we present the results of our experiments
to verify and validate the accuracy of this framework. Finally, in
Section 6 we conclude and discuss our future work.

2. RELATED WORK
In [2], Brinkhoff introduces a system called Network-based Gen-

erator of Moving Objects that models and simulates the behavior of
moving objects (e.g., vehicles) on road networks. This system has
been extensively used to benchmark k-nearest neighbor and loca-
tion based search algorithms in road networks. While the focus of
this system is the moving objects and their mobility in road net-
works, we primarily study to model the traffic flow on the network
segments. In addition, this work relies on some simplistic assump-
tions about the network parameters such as minimum and maxi-

1http://infolab.usc.edu/projects/transdec/model.html

13

mum speed assignment for the network segments.
The freeway Performance Evaluation Monitoring System (PeMS)

[13] developed by UC Berkeley collects and stores data from loop
detectors operated by Caltrans. The main goal of PeMS is to con-
vert the freeway sensor data into graphs and tables that show per-
formance measures and traffic patterns on freeways in the State of
California. The scope of PeMS is limited to collection and analy-
sis of the historical freeway sensor data. However, our goal is to
model the traffic flow for any given road network (even without
sensor data) as described in Section 4.

Most of the traffic simulators developed in the recent decade use
microscopic simulation models (aka, agent-based models) [14, 6]
to simulate the traffic flow in road networks. The microscopic sim-
ulation models focus on the behavior of the system entities (e.g.,
vehicles and drivers) as well as their interactions with the system
parameters (e.g., traffic lights). For instance, for each vehicle in the
stream, a lane-change is described as a detailed chain of drivers’
decisions. These simulation models, however, ignore the global
descriptions of the traffic flows such as flow-rate, density and ve-
locity and often are restricted to synthetic or simplified data.

There also exist several machine learning techniques developed
for the purpose of traffic modeling. In [7], Kamarianakis et al.
proposed a space-time autoregressive integrated moving average
model to estimate the traffic flows on road networks. In [9], Lint et
al. introduced a neural network based technique to model the traffic
flow on freeways. However, all of these approaches are univariate
and ignore most important factors such as road network geometry
and spatiotemporal characteristics of the traffic flow.

3. DEFINITIONS
In this section, we formally define a road network with traffic

flow as a spatiotemporal network. We assume a spatial network
(e.g. the Los Angeles road network) containing a set of nodes
and segments. We model the spatial network as a time-dependent
weighted graph (i.e., spatiotemporal network) where the weights
are time-varying travel-times (i.e., traffic flow) between the nodes.
Below, we formally define our terminology

DEFINITION 1. Spatiotemporal Network
A Spatiotemporal Network is defined as a graph GT (V,E,W)
where V = {vi} is a set of nodes representing the intersections
and terminal points, and E (E ⊆ V × V) is a set of edges repre-
senting the network segments each connecting two nodes. Each
edge e is represented by e(vi, vj) where vi and vj are starting
and ending nodes, respectively, and vi 6= vj . For every edge
e(vi, vj) ∈ E, there is an edge travel-time function wi,j(t) ∈ W ,
where t is the time variable in time domain T . An edge travel-time
function wi,j(t) specifies how much time it takes to travel from vi

to vj starting at time t.
Figure 1 illustrates a spatiotemporal network modeled as

GT (V,E,W). While Figure 1(a) shows the network structure with
five nodes and five edges, Figures 1(b), 1(c), 1(d), 1(e), 1(f) illus-
trate the time-dependent edge costs (i.e., travel-times) for the edges
of the network.

4. METHODOLOGY
Our modeling framework is based on the real-world traffic data

collected from the freeways in Los Angeles County (LA). The pro-
posed framework offers solutions to the following two cases. In
the first case, given the historical temporal data (time-series of traf-
fic flow possibly collected from various sensor locations) of a road
network, our framework creates the spatiotemporal model of that

(a) Graph GT (b) w1,2(t)

(c) w2,3(t) (d) w2,4(t)

(e) w4,5(t) (f) w3,5(t)

Figure 1: A Spatiotemporal network GT (V,E,W)

network using the temporal data only. We refer to this case as
Modeling with Temporal Data (MTD). However, the temporal
data may not be available for most of the road networks as acquir-
ing such data is a complex and sometimes prohibitively expensive
task. In this (second) case, our framework generates a spatiotempo-
ral network model from the spatial characteristics and the topology
of the road network. We refer to the second case as Modeling with
Spatial Characteristics (MSC).

Our approach involves the following three steps. In the first step,
we compute the time-dependent travel-times on each network seg-
ment using historical time-series sensor data (traffic flow genera-
tion). In the second step, we attach semantic information to the
network by labeling the regions of the network based on its spa-
tial characteristics (spatial characterization). Finally, in the third
step, we employ a semi-supervised clustering algorithm to group
the traffic flows of similar kind into respective spatial characteris-
tics by using the data obtained in the first and second steps (hier-
archical semantic traffic flow clustering). The main idea here is to
find the most representative traffic flows in and between the net-
work regions based on their spatial characteristics. As we describe
in Section 4.3.2, the traffic flows found in the final step can be used
to model the traffic of any given road network without temporal
data. Specifically, one can transfer any road network model to its
corresponding spatiotemporal network model by using the similar
spatial characteristics introduced in our model. While the tech-
niques developed in the first step can result in MTD, we employ
the second and third step to achieveMSC. Below, we explain each
of these steps in turn.

4.1 Traffic Flow Generation
In the past one year, through a system called RIITS [15], we

have been continuously collecting and archiving the sensor (i.e.,
loop detector) data from a collection of approximately 1500 sen-
sors located on the freeways of LA County. The urban area of Los
Angeles County has an area of 4752 square miles (12,308 km2) and
population of approximately nine million people. Figure 2 shows

14

Figure 2: Traffic sensor layout in LA County

the spatial span (covering 1183 miles) of the traffic sensors on a
map. The sampling rate of the sensor data is 1 reading/sensor/min.
We average the readings over three consecutive time intervals in
order to ease the implementation and smooth out the noise. There-
fore, each sensor provides 480 distinct measurements per day. We
only consider the readings during the weekdays. The storage space
required for this streamed dataset is approximately 350 MB/day
without indexing overheads. Currently, our data warehouse con-
sists of data from the period of October 2008 to June 2009.

The main traffic parameters collected from the loop detectors are
occupancy and volume. The loop detectors turn on and off as cars
pass over them. The number of ’on’ readings within a time interval
(e.g., 60 seconds) determines the occupancy measure. Occupancy
is defined as the percentage of time a point on network segment is
occupied by vehicles. The other parameter, volume, is defined as
the number of vehicles flowing past a point during a time interval.
We derive a third parameter, speed, from the occupancy and volume
readings using the formula introduced in [1] Speed = C∗V

O
where

C is a constant proportional to the average length of a car, V is
volume, and O is occupancy.

In order to determine the time-dependent travel-time on each net-
work segment, we employ a two step process. First, using the spa-
tial query operators, we map the coordinates of the individual sen-
sors to network segments. Then, for each segment, we aggregate
the desired traffic measure in both time and space dimensions by
considering the distances between the sensors. For instance, for a
given time instance, we compute the travel-time of a segment by
the following formula Travel_T ime =

∑n
i=1

D(si,si+1)

Si
where

Si, D(si, si+1) and n represents the speed measured on sensor i at
time t, the distance between two consecutive sensors, and the num-
ber of sensors on the segment, respectively. Figure 3 shows the
graph of travel-time on a segment of I-405 freeway in LA between
6:00 AM and 8:00 PM on a weekday.

4.2 Spatial Characterization
In this section, we describe how we characterize the road net-

work using geographical and topological characteristics of the net-
work. Studying the real-world traffic data, we observe the follow-
ing three main spatial and temporal characteristics of the traffic
flow which motivated us to pursue the approach discussed in Sec-
tion 4.3. First, the traffic flow on network segments demonstrates
a strong periodicity at various spatial and temporal scales (daily,
weekly, monthly, and quarterly). For example, the traffic flow on
particular segment may exhibit a huge peak on each day at around
8:00 AM, a smaller one at around 4:00 PM, and an absolute mini-
mum at around 2:00 AM during the weekdays in fall season. Sec-
ond, the traffic flow is highly affected by the spatial characteristics
of the network. That is, the traffic flow follows different patterns

Figure 3: Real travel-time during a weekday on a segment of
I-405 in LA County

near major residential areas, city centers (aka, downtown), attrac-
tion areas (e.g., shopping centers, sports stadiums), and the regions
in between. For instance, while a segment connecting a residential
area to downtown is congested during morning hours, the opposite
segment connecting downtown to a residential area is usually con-
gested in the afternoon. Third, the traffic flows are also affected
by the topology (i.e., another spatial characteristic) of the network.
For example, a dense network topology which contains numerous
nodes (hence many alternative routes) is usually congested in the
hubs (i.e., intersection of the nodes) depending on the time of the
day but has steady traffic flow in the rest of the region.

As we discussed, the main idea behind incorporating the spatial
characteristics of the network to our model comes from the obser-
vation that the traffic flow in certain parts of the network can be
affected by the geographical and topological characteristics. Al-
though, there are various other characteristics (e.g., population and
demographics) that are also good candidates to characterize a road
network, we select two major characteristics for the purpose of this
study namely, geographical region and density. We plan to include
more spatial characteristics into our model in the future. For our
study, we developed a graphical user interface (i.e., a map mashup)
that enables users to label the geographical regions (i.e., residen-
tial, downtown, and attraction) of the road network. To capture the
density information, the map interface allows users to partition the
road network into regular grid cells (e.g., 5x5 km) and label the sub-
networks (overlapping the grid cells) as dense or sparse based on
the distribution of the number of nodes in each grid cell. Note that
the map interface allows users to control the grid cell size. Clearly,
these characteristics do not consider all possible aspects of the traf-
fic flow and their specific definitions may vary. Our main focus
is to establish a framework that considers the spatial characteris-
tics of the road network for generating a spatiotemporal network
model. We emphasize that our framework allows users to select
their preferred spatial characteristics among the pre-defined ones.
For example, one can only select regional information (ignoring
density) to generate the spatiotemporal model of a particular net-
work. In the following section, we explain how we incorporate
the spatial characteristics of a network in to our proposed semi-
supervised clustering algorithm.

4.3 Hierarchical Semantic Traffic Flow Clus-
tering

The goal of this step is to cluster the time-series data constructed
in Section 4.1 by enforcing the spatial characteristics mentioned in
Section 4.2. Such clustering enables us to find the most represen-
tative traffic flows for the corresponding network regions. Towards
this end, we propose Hierarchical Semantic Traffic Flow Clustering
(HSTFC) method that is based on the semi-supervised clustering

15

algorithm introduced in [17]. Although the unsupervised clusters
can identify the natural groups, it is extremely difficult to construct
the mapping between the representation of the groups and their
semantic meanings. Semi-supervised clustering addresses this is-
sue by relating domain knowledge (in the form of labels and con-
straints) in to clusters. In other words, semi-supervised cluster-
ing not only creates natural groups with similar features but also
provides semantic meanings to the cluster results. Therefore, in
the context of our problem, semi-supervised clustering technique
enables us to associate spatial characteristics of the network with
their traffic flows. In the following sections, we first explain pair-
wise constraint clustering (a semi-supervised clustering method)
and discuss how it fits in to our problem. Second, we present our
proposed hierarchical clustering structure.

4.3.1 Pairwise Constraint Clustering Method
Pairwise constraint clustering (PCC) [17] is a classic technique

to employ semi-supervised clustering. PCC, during the cluster com-
putation, incorporates the domain knowledge (of the data instances)
in the form of pairwise cannot-link and must-link constraints, and
make the cluster results maximally satisfy the constraints. While
must-link constraint specifies that two instances should be assigned
into the same cluster, cannot-link constraint specifies that two in-
stances should be assigned into different clusters. Let us now ex-
plain how this technique is adopted to our problem. As we dis-
cussed, in typical transportation networks, segments demonstrate
different traffic patterns based on their geographical areas. For ex-
ample, the traffic pattern of freeways near downtown may be en-
tirely different than that of a suburban area. On the other hand,
the segments which are spatially close to each other (e.g., two free-
way segments near Hollywood) may generate similar traffic pat-
terns. Hence, we can capture the knowledge in the latter case in
the form of must-link constraint and the former case in the form
of cannot-link. The formulation of pairwise constraint clustering is
given below.

Let M be the set of must-link pairs such that (xi, xj) ∈ M
implies xi and xj should be assigned to the same cluster, and C be
the set of cannot-link pairs such that (xi, xj) ∈ C implies xi and
xj should be assigned to different clusters. Let Wm = wij and
Wc = wij be the two sets that give the weight to the constraints
in M and C, respectively. Let li be the assigned cluster number of
instance xi, and µli be the centroid of the cluster li. The cost of
violating these pairwise constraints is typically the sum of violating
pair(s) times their penalty weight. Specifically, the cost of violating
a must-link constraint is given by wij ∗ f(li 6= lj), where f is the
indicator function, with f(true) = 1 and f(false) = 0. Similarly,
we could get the cost of violating the cannot-link constraint aswij∗
f(li = lj). Using this model, the problem of PCC is formulated
as the minimization problem on the following objective function:
1
2

∑
xi∈D

‖xi − µli‖
2 +

∑
(xi,xj)∈M

wij ∗ f(li 6= lj)

+
∑

(xi,xj)∈C

wij ∗ f(li = lj)

Algorithm 1 presents our pairwise constraint (k-means) cluster-
ing algorithm. The algorithm takes the dataset of the traffic flow
(D), a set of must-link constraints (M), and a set of cannot-link
constraints (C). Note that M and C are derived from the spa-
tial characterization step. First, we call the function POPULATE-
CONSTRAINTS to generate transitive closure over pair-wise con-
straints denoted as M ′, C′. Next, we initialize the cluster center by
choosing k points from the cannot-link constraints pairs in C′ as
long as they do not have must-link constraints in M ′. If we cannot
find such k points, we terminate the algorithm to enrich the input

constraint set from the dataset, and restart. Finally, the algorithm
returns the centroids of clusters that satisfy all the specified con-
straints. It is important to note that with Algorithm 1, we utilize the
pairwise constraints for initializing the cluster centroid. For exam-
ple, if two instances have cannot-link constraint, they should have
distinct spatial category information. This enables us to guide the
clustering process that generates two clusters maintaining distinct
spatial characterizations. We assume that the cluster number (i.e.,
k) is equal to the number of pre-defined spatial characteristics.

Algorithm 1 Pairwise Constraint K-means Clustering Algorithm
Input: Traffic flow D, must-link constraints M ⊆ D×D, cannot-
link constraints C ⊆ D ×D, Cluster Number k
Output: The cluster index of each variable l1, ...ln
1: Call POPULATE-CONSTRAINTS(M,C);
2: Initialize the cluster center µ1, ...µk

3: For each point xi in D, assign it to the closest cluster lj such
that VIOLATE-CONSTRAINTS(di, lj ,M,C) is false.

4: For each cluster Ci, update its center by averaging all of the
points dj that have been assigned to it.

5: Iterate between (3) and (4) until convergence.
6: Return l1, ...ln.

POPULATE-CONSTRAINTS(must-link constraints set M,
cannot-link constraints set C)
1: For each a: if both (a, b), (a, c) ∈M , M = (b, c) ∪M
2: For each a: if (a, b) ∈M , and (a, c) ∈ C, C = (b, c) ∪ C
3: Return M , C and denoted as M ′, C′

VIOLATE-CONSTRAINTS(data point x, cluster L, must-link con-
straints M, cannot-link constraints C)
1: For each (x, y) ∈M : If y /∈ L, return true.
2: For each (x, y) ∈ C: If y ∈ L, return true.
3: Otherwise, return false.

4.3.2 Hierarchical Pairwise Constraint Clustering
So far we have explained the pairwise constraint clustering, but

PCC itself is not sufficient to solve our problem. This is because,
some network segments may lead to multiple (and possibly contra-
dictory) pairwise constraints depending on their spatial character-
ization. For example, let us consider both region and density in-
formation as two types of spatial characteristics that guide the pair-
wise constraint clustering. During the must-link and cannot-link
constraint construction, two instances which have the same density
value may lead to a must-link constraint. Meanwhile, a cannot-
link constraint may also be assigned to these two instances due to
their difference in the region values. In this case, since the two
instances have both must-link and cannot-link constraints simulta-
neously, PCC technique will suffer. To avoid this problem, we
propose a hierarchical pairwise constraint clustering method that
guides the clusters in multiple levels by considering a single type
of characteristics at each level. It is important to note that our hi-
erarchical structure makes it very easy to add new characteristics
(e.g., segment length) to the system. Currently, we only have two
hierarchies namely, region and density.

Fig.4 depicts an example of our hierarchical clustering method
for two spatial characteristics namely, region and density. As illus-
trated, at the first level, the region information is used to compute
the initial clusters. At the second level, based on the results from
the first level, the density information is used to guide the semi-
supervised clustering. Finally, the output are the traffic flows (i.e.,
centroid of clusters) corresponding to each spatial characteristics.

Let us now explain how this step is useful to achieve MSC case

16

Figure 4: Hierarchical semantic clustering flowchart.

discussed in Section 4. As we explained, after clustering the traf-
fic flows (for LA county dataset) based on the pre-defined spatial
characteristics, we obtain a representative traffic flow (i.e., cluster
centroid) corresponding to each spatial characteristics. Assuming
that the traffic pattern in LA county is typical and generic, we use
the proposed framework to generate the traffic flow for any given
road network that has no temporal data but has similar spatial char-
acteristics. Specifically, given a road network and its spatial char-
acterization, we first group the network segments based on their
spatial characteristics and then assign each group the correspond-
ing cluster centroid obtained from LA county dataset.

5. PERFORMANCE EVALUATION

5.1 Experimental Setup
We conducted several experiments with different road networks

and parameters to evaluate the performance of our algorithm. As
we mentioned in Section 4.1, we used the real-world Los Angeles
freeway traffic sensor data to construct our model. Since the traf-
fic flow on freeways is much simpler than that of the local road
network (i.e., no traffic light, no pedestrian), it requires less char-
acterization. Therefore, to simplify our experiments, we only eval-
uated our model on freeway data. The sensor dataset is collected
from 1592 sensors on the freeways during the period from October
2008 to June 2009. In order to represent the traffic flow on each
segment, we computed the average travel time (from the historical
sensor data) from 6:00 AM to 9:00 PM with 15 minute time in-
tervals. As our road network dataset, we used Los Angeles (LA)
and San Joaquin County (SJ) freeway network data. We obtained
these datasets from NAVTEQ [11]. Using NAVTEQ dataset, we
constructed the graph G(V,E) representation of LA and SJ free-
way networks. Each network segment is represented in the vector
data format and described by more than 20 attributes such as direc-
tion, speed limit, zip code, location, density, geographical location
(e.g., residential), etc. Based on the location and direction informa-
tion, we labeled the freeway segments into eight spatial categories
namely, RR, R, D, A, R2D, D2R, R2A, A2R. The descriptions of
these labels are presented in Table 1. Moreover, in addition to re-
gion labels, we defined another label capturing the density infor-
mation of the network segments. In order to assign density label
to the network segments, we partitioned both LA and SJ freeway
networks into 5 × 5 km regular grid cells. Based on the average
number of nodes(α) in each grid cell (assuming uniform distribu-
tion of the nodes), we labeled the segments as Dense Area (i.e.,
area that has more nodes than α) or Sparse Area. We conducted
our experiments on a workstation with 2.7 GHz Pentium Core Duo
processor and 12GB RAM memory. Due to the space constraints,
we only present the experimental evaluations from LA dataset.

Table 1: Spatial Label Description
Label Spatial Information for Freeway Segments
R Residential Area
RR Remote Area, area far from downtown and res.
D Downtown Area
A Attraction Area
R2D From Residential Area to Downtown Area
D2R From Downtown Area to Residential Area
R2A From Residential Area to Attraction Area
A2R From Attraction Area to Residential Area

(a) Downtown (b) Residential

(c) Residential-to-Downtown (d) Residential-to-Attraction

Figure 5: Traffic flow comparison

5.2 Performance Study
For performance evaluation, we compared our algorithm with a

naive approach that is based on decision tree. To implement deci-
sion tree, we used eight spatial categories (represented in Table 1)
and density information (i.e., dense or sparse) as the nodes of the
decision tree. The leaves of the decision tree contained the traffic
flow information of the segments in the same category. Since each
leaf can contain more than one traffic flow, we took the average
value of the traffic flows to represent the corresponding leaf with
one traffic flow. In our experiments, we measured the traffic flow
similarity, general error rate and confidence interval.

5.2.1 Traffic Flow Similarity Comparison
In this set of experiments, we compare the traffic flow obtained

from the two algorithms with actual (observed) traffic flow on the
segments. We randomly choose one instance in four categories:
D, R, R2D, R2A. Figure 5 shows the traffic flow with respect to
these four categories. The graphs cover the period from 6:00 AM

17

(a) Mean (b) Variation

Figure 6: General error rate comparison

(represented as 0 in the figures) to 9:00 PM with 15 minutes time
intervals. As illustrated, the traffic flow generated by our HSTFC
algorithm is more consistent with actual traffic flows. This is be-
cause, in real-world, some traffic patterns do not follow the major
traffic flow trend in the same category due to some special events
(e.g., accidents, lane closure). However, the naive decision tree ap-
proach considers that each instance contributes equally towards the
construction of the category presentation. This assumption causes
the results deviate from the major pattern trend hence leading to
imprecise traffic flow representation. On the other hand, HSTFC
considers both the spatial correlations and the traffic flow features;
therefore, the centroid is calculated only based on the major trend
of each category without possible noisy instances.

5.2.2 General Error Rate Comparison
In the second set of experiments, we compare the overall perfor-

mance of two algorithms based on average root mean square error
(MSE) and standard deviation(STD). These two measures enable
us to quantify the amount by which the estimated centroids differ
from the real instances. MSE and STD are calculated based on the
distances between an individual instance and its corresponding cen-
troid. The lower the value of these measures, the more precise the
corresponding algorithm. Figure 6 depicts the performance of the
two algorithms with respect to eight spatial categories. In general,
the results show that the naive approach is less accurate than our
algorithm with respect to both MSE and STD measures except for
the RR category. The reason is that for RR, we require more types
of characterizations to capture its traffic flow.

5.2.3 Confidence Interval Evaluation
In the final set of experiments, we use confidence intervals (CI)

to indicate the reliability of our estimates. In particular, we evaluate
the intensity of the featured clusters generated by the algorithms
using CI. We consider the level of confidence interval is 90%, and
use the mean of all distances between the instances and their cluster
centroids as the observed mean value. Therefore, the lower the
mean value, the denser the cluster. Figure 7 depicts the Euclidean
distance between the instances and the cluster centroids (Y-axis) for
eight spatial categories (X-axis). As illustrated, the naive algorithm
has more sparse population of instances in each category.

6. CONCLUSION AND FUTURE WORK
In this paper, we introduced a framework for realistic and ac-

curate modeling of traffic flows in road networks. We explained
the design and implementation of our framework based on a real-
word traffic sensor dataset. We intend to extend this work in two
directions. First, we plan to extend the set of spatial characteris-
tics supported by our framework to a complete minimum set that
allows for modeling all typical road networks. Second, we plan to
incorporate temporal characteristics (e.g., congestion intervals) of
the road networks into our framework.

Figure 7: Confidence interval evaluation

7. ACKNOWLEDGMENTS
This research has been funded in part by NSF grants IIS-0238560

(PECASE), IIS-0534761, and CNS-0831505 (CyberTrust),the NSF
Center for Embedded Networked Sensing (CCR-0120778) and in
part from the METRANS Transportation Center, under grants from
USDOT and Caltrans. Any opinions, findings, and conclusions ex-
pressed in this material are those of the author(s) and do not neces-
sarily reflect the views of the National Science Foundation.

8. REFERENCES
[1] P. Athol. Interdependence of certain operational

characteristics within a moving traffic stream. In TRB, 1967.
[2] T. Brinkhoff. A framework for generating network-based

moving objects. In Geoinformatica, 2002.
[3] U. Demiryurek, F. B. Kashani, and C. Shahabi. Efficient

continuous nearest neighbor query in spatial networks using
euclidean restriction. In SSTD, 2009.

[4] B. Ding, J. X. Yu, and L. Qin. Finding time-dependent
shortest paths over large graphs. In EDBT, 2008.

[5] B. George, S. Kim, and S. Shekhar. Spatio-temporal network
databases and routing algorithms: A summary of results. In
SSTD, 2007.

[6] S. P. Hoogendoorn and P. Bovy. State-of-the-art of vehicular
traffic flow modelling. In Journal of Systems and Control
Engineering, 2001.

[7] Y. Kamarianakis and P. Prastacos. Space-time modeling of
traffic flow. 2007.

[8] E. Kanoulas, Y. Du, T. Xia, and D. Zhang. Finding fastest
paths on a road network with speed patterns. In ICDE, 2006.

[9] H. v. Lint, S. P. Hoogendoorn, and H. J. v. Zuylen. State
space neural networks for freeway travel time prediction. In
ICANN, London, UK, 2002.

[10] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis.
Continuous nearest neighbor monitoring in road networks. In
VLDB, 2006.

[11] Navteq. http://www.navteq.com. Last visited June 17, 2009.
[12] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query

processing in spatial network databases. In VLDB, 2003.
[13] PeMS. https://pems.eecs.berkeley.edu/. Last visited May 15,

2009.
[14] M. Pursula. Simulation of traffic systems-an overview. In

Journal of GIS and Decision Analysis, 1999.
[15] RIITS. http://www.riits.net/. Last visited December 25, 2008.
[16] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable

network distance browsing in spatial databases. In SIGMOD,
2008.

[17] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. K-means
clustering with background knowledge. In ICML, 2001.

18

A Scalable Heuristic for Evacuation Planning in Large Road
Network

Dafei Yin
Institute of GIS & Remote Sensing

Peking University
Beijing, China, 100871

dafeiyin@pku.edu.cn

Abstract
Evacuation planning is of critical importance for civil authorities
to prepare for natural disasters, but efficient evacuation planning
in large city is computationally challenging due to the large
number of evacuees and the huge size of transportation networks.
One recently proposed algorithm Capacity Constrained Route
Planner (CCRP) can give sub-optimal solution with good
accuracy in less time and use less memory compared to previous
approaches. However, it still can not scale to large networks. In
this paper, we analyze the overhead of CCRP and come to a new
heuristic CCRP++ that scalable to large network. Our algorithm
can reuse search results in previous iterations and avoid the
repetitive global shortest path expansion in CCRP. We conducted
extensive experiments with real world road networks and different
evacuation parameter settings. The result shows it can gives great
speed-up without loosing the optimality.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of Algorithms and
Problem Complexity -- General

General Terms
Algorithms, Performance, Experimentation

Keywords
Evacuation Planning, Shortest Path, CCRP

1. Introduction
Evacuation, generally defined, is to transfer people at risk from
dangerous sources to safe destinations. The evacuation planning
gives optimized route and schedule for people to evacuate
efficiently. The challenge to give out an optimized evacuation
plan lies in dealing with the conjunction. Basically, if we did not
consider the capacity constrains along the route and not separate
people well spatially/temporally, there will be terrible conflict as
everyone would like to take shortcut. Most existing evacuation
planning works in relatively small scale, e.g. building or campus.
In this work, we consider this problem in large scale, where

people must get out of town via the transportation network. It is
an important function for crisis management authority in big city
to deal with the disaster like earthquakes, hurricanes, terrorist
attacks, etc. Although some agencies have setup some guides on
how to reach the safe area, these rough plans seldom consider the
actual road network capacity during the disaster and did not
consider the position of people when the disaster happens. Here,
we assume we can get people’s position by tracking their cell
phone signal, and we can monitor the road network situation by
CCTV camera etc. Based on this information, we can come out a
set of plans optimized for everyone, rather than for the interest of
individual. And we can give each citizen detailed instruction (via
e.g. SMS to their cell phone) on which route to take, as well as
when to start/stop along the route. If they all follow our planning,
that will be the best for all of them to evacuate soon.

An efficient evacuation planning should consider the trade-off
between minimizing the egress time 1 and minimizing the
algorithm run-time. The optimal solution generates plan that
minimize the egress time. Unfortunately, most of previous optimal
solutions run too slow and require too much memory. They often
convert evacuation problem to Quickest Flow problem over Time-
Expended network [4] [6]. It is hard for them to scale because the
time-expended network model needs to replicates the entire
network in each time slice and add links in between these
networks. Practically, we would like to minimize the algorithm
run-time to give quick response, even that sacrifices the optimality
a little. The recent work CCRP (Capacity Constrained Route
Planning) [1] achieved great improvement on both run-time and
memory size. However, it still needs more than a day to give the
result for mid-sized city [2]. In this paper, we propose a new
heuristic algorithm CCRP++ based on the similar semantic as
CCRP, but more scalable to large road network. There are many
definitions on "scalable". Here we give one definition in the
context of evacuation planning. A scalable evacuation algorithm
means: the run-time to generate plan for each group will not
increase as the size of network increase. Like CCRP, our
algorithm will also generate one plan for one group in each
iteration, but the run-time per plan is almost constant regardless
the network size.

The rest of the paper organizes as following: in Section 2, we
formally define the evacuation problem, and analyze the overhead
of CCRP algorithm. In Section 3, we present the idea of our
algorithm. In order to make it easier to understand our design, we
discuss several naive implementations before introducing the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IWCTS’09, Nov 3, 2009, Seattle, Washington, USA.
Copyright 2009 ACM ISBN 978-1-60558-861-2.... $10.00.

1 Egress time is the amount of time it takes for all evacuees to

reach the safe destinations. It is the duration from the first
person start moving to the last evacuee arrives at the safe place.

19

mailto:dafeiyin@pku.edu.cn

CCRP++. In Section 4, we present our experiment to verify its
optimality (egress time) and the efficiency (algorithm run-time).
In Section 5, we discuss why we not loose the optimality,
compared to CCRP. We conclude our work and point the future
work in Section 6.

2. Problem Definition and Previous work
2.1 The Evacuation Problem
Given: A transportation network represented as graph G (V,E)
with some source nodes S, some destination (exit) nodes D and
some middle node N. There are ps evacuees in each source s∈S
which need to be sent to any of the safe destination d∈D. Every
node n∈N has maximum capacity Cap(n). Each edge(link) e ∈E
has capacity constrains Cap(e) and travel time Cost (e).
Output: An evacuation planning consists of a set of plans for
each individual. Since people from the same source share the
same route/schedule, they are generated together as a group. So
each plan consists of the following information: the number of
people, the origin-destination routes, the arrival and departure
time in each middle node. It can be interpreted as a integer flow,
f(u,v) where u, v ∈N, moving along the path. The maximum
number per plan should observe the capacity constraints.
Goal:
1) Minimize egress time
2) Minimize the algorithm run-time.
Constrains:
Capacity Constrains: f (u,v) <= Cap(e); f (u,v) <= Cap(v) ;

Flow Conservation: ∑fs (u,v) = ps (u ∈ S) ;

 ∑fv (u,v) = ∑ps (v ∈T) ;

Integer Constrains: f (u,v)> 0 ; f (u,v) ∈ N ;

Model:

Following our previous work, we model the road network as
graph consisting of a set of sources nodes with certain number of
evacuees, a set of destination nodes as safe place, a set of middle
nodes with maximum holding capacity and the edges with travel
cost and capacity linking the nodes. Figure1 shows a small
network model and corresponding evacuation plan example.

Fig1. The network model and example evacuation plan [1]

Notation2:
We list some of notations we will in the rest of the paper
S (si) Source node set ; Source node

D (di) Destination node set; Destination node;

N (ni) Middle node set; middle node;

P (pi) Total number of evacuee; Num of people in node Ni

S0 Virtual super source node

R Route; One path /schedule plan per iteration

EA Earliest Arrival Time to any destination from one source

Q The priority queue used in CCRP-- and CCRP-

RQ The priority queue used in CCRP+ to store Reserved Route

PreRQ The priority queue used in CCRP++ to store Non-Reserved Route

2.2 The CCRP Algorithm
CCRP is a greedy algorithm to give sub-optimal evacuation
planning. The core heuristic is to choose the source with the
“Earliest Arrival time (EA)” and send maximum possible people
within capacity constraints along the path in each iteration. The
intuition behind this heuristic could be: evacuate the people
“nearest” to any destination first will give others more chance to
take shorter path. Here, “nearest” is not based on distance but on
temporal. It means “the arrival time to any destination from one
source is the earliest among all sources”. Besides accelerating the
run-time, the CCRP requires less memory since it uses only the
original network instead of the time-expanded network.3 The
complexity of CCRP is O(P*N*logN), where P is the total
number of evacuees in network, and N is the number of nodes4.

CCRP iteratively runs Dijkstra shortest path algorithms from all
source nodes to find the source-destination pair with EA. It starts
from all sources' earliest possible start time, revises the EA for
each middle node, and label setting the node with minimum EA
until reach any destination. Then it retrieves the route by back
tracking from this destination to the source Si. Si becomes the EA

2 In this work, we do not differentiate the similar concepts like:

“start” and “source”, “exit” and “destination”, “path” and
“route”, and “edge” and “link”.

3 CCRP uses time aggregated model [3] to represent the capacity
changes for each edge during the entire evacuation process. It
still need to record the available capacity for every edges in
each time slot, but it at least avoid the additional link in-
between the network of different time slots in time expanded
network model.

4 O(NlogN) is Dijkstra shortest path complexity in sparse graph.
In the worst case, there will be one person per plan/iteration.

20

source in this iteration. After that, it reserves 5 maximum of
available capacity of the edges along the path. Such process of
single iteration will go on until no evacuees in any source.
CCRP is not scalable because as the network size increases, the
expansion becomes more and more expansive as the source
number increase. Considering the spatial distribution of the source
and destination nodes will give us a more clear perspective to
understand this process. In each iteration, like water wave circle
expanding from different sources, CCRP expand from different
source in parallel until one expansion touches any destination.
One observation is there are many "unfinished" expansions
remains when the first source reaches its destination. For example,
in Fig2, there are three source nodes, S1, S2, and S3. The earliest
arrival path is S1-D1 in the first iteration and S2-D2 in the second
iteration. In both iterations, the expansion of S3 is “unfinished”
and “repetitive”. If there are S sources, there will be S-1 such
overhead expansions in single iteration, and it will be (S-1)*P
such expansions in the worst case. Even worse, most of these
expansions will repeat again and again in the future iterations until
they become the first one to touch any destination. However,
without these parallel expansions, no one can tell which source's
expansion will touch the destination first. These unfinished
expansions are the "overhead" of CCRP6.

Fig2. The expansion of S3 is “unfinished” and “repetitive”

3. Algorithm
3.1 Overview of Algorithm Design
Based on the observation of the overhead of CCRP, we can see
there are many unfinished shortest path expansions neither
contribute to the result in current iteration nor benefit in future.
We would like to ask: if only one source's shortest path is directly
contributing in single iteration, can we delay the expansions from
other sources? Or can we complete the unfinished expansions to
re-use in the future iteration?

We come out a series of algorithms to answer the above questions.
Some are naïve but worth to present for better understanding the
final one CCRP++. All the algorithms share the same idea to

5 Reserve not means exclude others to take this path. Only the
“full reservation” which takes the last available capacity would
exclude the other source’s chance to use edge e at the same time.

6 In the later work of CCRP, this process is interpreted as single
source shortest path tree expansion from a virtual super source
S0 to any destination by adding edges from S0 to Si with length
as the earliest departure time of Si. It maintains the same
semantic because finding the shortest path from one super
source S0 is the same to find EA from any one source Si.
However, it does NOT avoid the overhead to expand from all
source nodes from S0 due to tie breaking.

"delay update the other sources' shortest path until it get chance to
reserve path". They share the following procedure:

a. Record the shortest path length from every source nodes.
b. Pick the source node with EA to send people (reserve path).
c. Update the new shortest path from this source.

Following the heuristic of CCRP, our algorithms give the person
near the exit higher priority to evacuate. However, we expand
from one source in each iteration, and reuse this shortest path in
the future iterations. They all use the priority queue with <EA,
Source> as <key, value> to record and pick the source node with
the earliest arrival time. All the algorithms terminate when there
are no people in any source. They different from each other in
initialize and update policy, which will be introduced below.

3.2 The Naive Approaches
3.2.1 CCRP--
There is a naive algorithm CCRP--, which empty sources one by
one. It first calculates the EA for each source without considering
the capacity constrains. Then it puts the source nodes into a
priority queue Q with the order of their EA. After that, it pops the
source node in the queue, and evacuates all the people in this
source. The major drawback of this approach is that it does not
keep the semantic of CCRP. For example, the sources ordered in
queue are S1, S2, and S3. S1's second path may be longer than the
path from S2 and S3, but it still reserves the second path from S1.

 3.2.2 CCRP-
Another algorithm called CCRP- initialize Q the same as CCRP--.
Then, in each iteration, it pops the first element <EAi, Si> in the
queue, and "checks" the availability of route Ri in case some
edges are taken by other source's reservation. If it passes the
check, it reserves the max available capacity along this route.
Then, it finds a new available route R’ and insert <EAi’, Si>. If it
fails the check, it will just find another new route R’’ and re-insert
queue the <EAi’’, Si>. Unlike CCRP--, CCRP- gives interleaved
path among different sources. It avoids the "unfinished" and
"repetitive" expansion in CCRP, because we only need to update
the shortest path from single source when it pops the queue.

The major problem of the CCRP- is the route in the queue will
invalidate frequently. Because we insert available but not yet
reserved path into the queue, it is possible that the reservation on
top of the queue will take the edge in the path from other sources.
If not updated in time, the invalid route will ruin the order of the
queue. For example, the sources ordered in queue are S1, S2, and
S3. It is possible that S2's route R2 blocked by S1's reservation, so
the EA2 is invalid. The EA of S2’s available route R2’ will be
EA2’, which maybe longer than EA3. However, the algorithm can
not detect this wrong order before S3 was popped. It pops S2
before S3 using the invalidated key EA2.

If we want to keep the correct order all the time, one way is to re-
calculate all the available paths for all sources and re-order the
queue, which will lead to similar overhead as CCRP7. Even if we
sacrifice the correct order of the queue, we may still suffer from
too many failed checking. The updated route maybe invalid again

7 There should be some intelligent way to identify the influenced

sources instead of re-calculating all the shortest paths. But this
is beyond the discussion of this paper.

21

and again before it valid (when it is popped the queue). The
frequent updating is an unpredictable overhead.

3.2.3 CCRP+
In order to deals with the "invalidation" problem of CCRP-, we
come to the CCRP+ algorithm. Different from CCRP-, it
"reserves" the updated available path before reinsert into the
queue RQ, which only consist of reserved path. So it guarantees
the routes validate before popped and avoid the checking (The
first time one source node being popped still needs to be check,
because the route we insert at the beginning is not reserved).

The drawback of this approach is it not guarantees the correct
order of non-reserved source node before it first popped. E.g. At
the very beginning, the order in RQ is S1, S2, S3. It is possible
that S1's reservation will take the edge in S2's route R2. And the
S2's next available route R2’ may be longer than S3's route R3. So
we should update S3 before S2. One way to keep the correct order
of non-reserved route is to recalculate path for all the remaining
non-reserved sources. However, it may take long time before the
last source to pop first time.

3.3 The CCRP++
In order to guarantee the correct order of non-reserved source
node, we introduce an auxiliary priority queue PreRQ to order the
non-reserved sources before insert into the priority queue RQ. The
<key, value>in both queues are <EAi, Si>. PreRQ keeps the
sources whose path NOT yet reserved. The RQ keep the source
whose path been reserved.

F
t
c
f
o
f
P
a
t

insert the updated <EAi’, Si> back to PreRQ. b).Otherwise, if
P1.EA >= Q1.EA, it means the Q1 have the "privilege" to
continue reserve. So we reserve another available path, until the
Q1’s updated route is longer than Q2’s.
We omit the Check(), Update() functions. They are simply a
shortest path using Dijkstra algorithm from single source and
return the Earliest Arrival time. Once all the people from one
source node are evacuated, it will not be re-insert into the RQ
anymore. The algorithm continues until there is no source in any
queue.

4. Experiment
We use binary heap to realize priority queue PreRQ and RQ. We
store the entire path, including the arrival and departure time at
each middle node. Since we have no prediction on how long will
it takes, we use dynamic array Cap[Edge][Time] to keep track the
available capacity of each edge during evacuation. Obviously,
linked list is another option. The test result we presented here are
based on the experiment in Windows 32bit platform (OS:
Windows XP; CPU: IntelCore2, 1.66GHz / Memory: 1.5GB). The
code is written in C++ and compiled with Microsoft .NET Visual
Studio 2005.

4.1 Experiment on Different Network Size
We use both real and synthetic data to conduct our experiment.
We use three datasets provide by [6] as basic road network. And
we can control different evacuation parameters: the number of
source, destination, and generate different number of evacuee on
sources. Before conducting these tests on large network, we have
tested both CCRP and CCRP++ in a small building network to
verify its correctness. Below is some of our test results.

Table 4.2 a. Test on the small building data
(47 nodes, 148 edges, 41950 evacuees, 12 sources, 1 destination).

Table 4.2 b. Test on the OL (City of Oldenburg) data (6105
nodes, 7029 edges, 511636 evacuees, 999 sources, 1038
destinations)

 Table 4.2 c. Test on the TG (City of San Joaquin County)

Algorithm Egress
time Groups Run-time

(sec)
Run-time
per Plan

(sec)
CCRP 138 820 2.656 0.0032

CCRP++ 105 1058 1.179 0.0011

Algorithm Egress
Time Groups Run-time

(sec)
Run-time
per Plan

(sec)
CCRP 2535 3090 132.176 0.0427

CCRP++ 2533 3483 15.454 0.0044
Algorithm 1. CCRP++
Initialization: Pre-compute the path for all sources to its
nearest destinations. Put <EAi, Si> into PreRQ.
Pop<EA1, S1> from PreRQ and insert it into RQ;
while (exit_num < evac_num)
 Q1 = RQ.top();

P1= PreRQ.top();
if (P1.EA< Q1.EA)

PreRQ.pop();
EA = Check (P1); // get the available EA
if (P1. EA == EA)

 RQ.push(P1); // push <EAi, Si> into RQ
 else
 P1.EA = EA;

PreRQ.push (P1); // push back to PreRQ
 else

RQ.pop(); //Send people and release the capacity
Q2 = RQ.top();
while (Q1.EA <= Q2.EA)

 Q1.EA = Update(Q1.S); //find next route
Fig 3. The CCRP++ algorithm
ig3 is the pseudo code of CCRP++. We first pre-compute the EA

ime from all sources and order them in PreRQ (without
onsidering the capacity constrains). Then we pick the top one
rom PreRQ to insert into RQ if its path is shorter and valid. In
rder to verify this, we compare the EA of the top elements: P1
rom PreRQ, and Q1 from RQ. a) If P1.EA< Q1.EA, it means the
1 maybe have the chance to reserve. We first check its
vailability. If it is available, we reserve this path and put it into
he RQ. If it fails the checking, we find an available path and

data (18263 nodes, 23797edge, 1429655 evacuees, 2844source,
3983 destinations)

 Table 4.2 d. on the SF (San Francisco) data
 (174056 node, 221802 edge, 13037136 evacuees, 26019 sources,
44245 destinations)

Algorithm Egress
Time Groups Run-time

(sec)
Run-time
per Plan

(sec)
CCRP 2283 8171 2700.018 0.3304

CCRP++ 2282 9067 53.578 0.0059

22

We get 2, 10 and 50 times speed up in building network, small
and mid-sized city respectively8. In all the test sets, we achieved
better run-time compared to the CCRP. Obviously, the larger the
network size is, the more speed up we can gain.

0

2000

4000

6000

8000

47 6105 18263 174056

Network Size(#of nodes)

Ru
n
ni
n
g
T
im
e(
se
c
) CCRP

CCRP++

Fig.4. The run-time of CCRP and CCRP++

Another observation is the run-time per plan not increasing as
much as the network size increases. The slight increment comes
from tie breaking9 rather than the shortest path calculation. Our
algorithm is scalable to large network.
We noticed the egress time in most of our tests is less than CCRP.
Besides, the number of groups generated by CCRP++ usually is
more than CCRP, i.e., CCRP++ tends to partition the people into
finer groups. Nevertheless, there is no semantic to control the
granularity of groups in both CCRP and CCRP++. Any way, the
good news is CCRP++ did not loose the optimality compared to
CCRP. We will further discuss this in Section 5.

4.2 Experiment on Different Parameter
We also conducted experiments on different parameters to verify
how evacuee number, source number, destination number
influence the results. The experiment shows our algorithm not
only scalable to the networks size, but also scalable to different
evacuation parameters.

Table 4.3 a Different Evacuee Number Test on OL data set
(nodes: 6105; sources: 998 regular: 4069 destinations:1038)

Test set Evacuees Egress
time Groups Run Time

(sec)
OL-1-1-1.net 511636 2533 3483 15.454
OL-2-1-1.net 1023787 2609 6581 24.625
OL-3-1-1.net 1533616 2646 9628 33.469

As the number of evacuee increase, the number of group and the
run-time increase accordingly. Interestingly, the egress time just

8 We did not obtain the result of CCRP in large city because the

original CCRP algorithm use static capacity table. With large
time slot, it exceed memory limit in Windows 32bit platform.

9 If there are more source nodes, there are more nodes with the
same EA, which lead to more nodes re-insert to PreRQ.

increases slightly. Maybe it is because we have so many
destinations that the conflict is not obvious. Algorithm Egress

Time Groups Run-time
(sec)

Run-time
per Plan

(sec)
CCRP -- -- -- --

CCRP++ 714 81887 2668.562 0.0326

 Table 4.3 b. Different Source Number Test on OL data set
(Nodes= 6105 Evacuee ~= 511636 Destination = 1038)

Test set Sources Egress
time Groups Run Time

(sec)
OL-1-1-1.net 998 2533 3483 15.454
OL-1-2-1.net 2091 3049 3931 28.360
OL-1-3-1.net 3079 3047 4534 38.953

As the source number increases, the run-time increases obviously.
However, we did not anticipate the egress time also increases.
Maybe that is due to more conflict from different sources.

Table 4.3 c. Different Dest Number Test on OL data set
(Number of nodes: 6105 (Evacuee ~= 511636 Source ~= 998)

Test set # of Dest Egress
time Groups Run Time

(sec)
OL-1-1-1.net 1038 2533 3483 15.454
OL-1-1-2.net 1537 1892 3201 15.781
OL-1-1-3.net 2080 1892 2958 15.031
OL-1-1-4.net 3109 1067 2512 11.422

As the destination number increase, the evacuation time, group
generated, and run-time got decrease in general.

5. Discussions
The core idea of our heuristic is to let the source keep updating its
own shortest path tree, rather than updating the entire shortest
path tree from S0. But the dilemma is without expanding from all
the sources, it does not guarantee the same result as CCRP. The
CCRP++ actually changes the semantic a little. It does not find
the path with the earliest arrival time in every iteration. Instead, it
picks the path with the minimum EA in the last expansion to
update. This enables us to delay updating other sources not likely
with EA in current iteration.
There is yet another way to interpret how we avoid the overhead
expansion in CCRP. Similar to the idea of Dijkstra shortest path
algorithm, assume we have an OPEN heap to store candidate
routes and CLOSE list to store the determined plans. We put the
path reserved before ith iteration in CLOSE, then find the new
path candidates and put them in the OPEN. It chooses from the
OPEN list the route with minimum length as i+1th route and
inserts it into the CLOSE. The difference between the CCRP and
CCRP++ is the way they updating the OPEN list. The CCRP will
generate the OPEN from scratch in every iteration by expanding
from all the sources. An more detailed complexity analysis will be
O(P*S* (N/S)* log (N/S)). Instead, the CCRP++ chooses only
the source that just reserved path to update its new path. Most of
the paths in OPEN are reused by previous expanding. The
complexity of CCRP++ is O (P* (N/S)* log (N/S)). That is why
CCRP++ always runs faster than CCRP. 10

Another problem is how will the semantic change of CCRP++
influence the result, especially on the optimality, compared to
CCRP?

10 We would like to point out the idea to re-use the OPEN list is

widely used in repetitive/dynamic shortest path planning, e.g. [8]

23

One natural question would be: the CCRP++ may impair the
“fairness” of the CCRP due to “over-reservation”, which means it
is possible that the updated route on top of RQ will take the edge
on “intended path” of the source beneath. This will leave less
chance for them to reserve shorter path.
First, it is true but we argue fairness is not help to improve
efficiency. We admit by using CCRP++, some source who could
evacuate earlier in CCRP lose the chance to evacuate that early in
CCRP++. For example, in our test on building data, one node N6
did not get chance to evacuate any people until 69th iteration with
EA= 44, which is later than 48th iteration with EA = 40 in CCRP.
However, it worth to point out that the entire egress time of
CCRP++ is 105, which much less than 136 by CCRP. The
“fairness” is neither the goal of CCRP nor CCRP++. Actually we
concern more on efficiency. To be concrete, we concern whether
one group could arrive at any destination earlier by taking certain
edge.
Second, the optimality of CCRP++ is at least not worse than
CCRP. As the CCRP will find the earliest available path in each
iteration, we prove the CCRP++ is able to reserve that path too.
Lemma1. (FIFO property) If an edge e is reserved earlier by S1 in
t1, and reserved later by S2 in t2, then EA1<=EA2. (The earlier to
take the critical edge, the better to reach destination earlier.)
Proof: (By contradiction) if S1 arrived e at t1 find its EA1 will not
earlier than EA2, the S1 would rather wait at e until t2, and then
take the same route as S2.
Corollary1. (Early reserve deserve) If S reserve route R by taking
edge e, then any source which would like to reserve the edge e
later could not reach destination earlier than S.
Theorom1: CCRP++ reserves the earliest available path as CCRP.
Here we argue that once there exists an earliest available path
which passes edge e, e must be taken by the popped source node
in RQ in CCRP++ at the first time.
Proof: Assume in the current iteration, S1 is the source popped
from RQ. S2 is beneath S1 in RQ with R2 as reserve path. S3 is the
source in PreRQ, with the R3 as intended path. By updating its old
route R1, S1 wish to take e to be part of the new route R1’. 1). If
there is available capacity on edge e, the S1 would reserve it and
re-insert <P1’, S1> into the RQ. It will be popped later. 2). If S3 in
PreRQ could take e and have available path shorter than R1’, it
should have been entered the RQ, and will pop next time. S3’s
route R3 will be the plan for next iteration. 3).If S2 in RQ have
reserved to take the edge e earlier, the route R2 should be shorter
than R1’. In that case, <EA1’, S1> will enter the RQ beneath the
<EA2,S2 > and pop later than R2.
No matter which source in PreRQ or on top of RQ takes the edge
e, the CCRP++ have ability to reserve earliest arrival path. ■

Third, we would like to know why the egress time is less in
CCRP++ in most of our test case. We have seen from above proof
that CCRP++ is able to reserve the earliest available route
immediately. Further more, the CCRP++ gives source on top of
the RQ more chance to keep reserving until its route longer than
the earliest arrival path. We wonder if that makes CCRP++ more
aggressive than CCRP by giving higher priority to whom take
certain edge earlier. We would like to investigate if the following
guess could give some hint.
Conjecture: CCRP++ is more aggressive than CCRP.

6. Conclusion
In this paper, we propose a new scalable algorithm to accelerate
the evacuation planning based on the semantic of the CCRP.
Because we do the local shortest path expansion from single
source rather than the global expansion from all sources, and we
reuse the result for future iteration, we achieve less run-time
compared to CCRP. We noticed that CCRP++ is greedier to
reserve the critical edges. We will further investigate if that is the
reason we get less egress time in most of our test cases. Anyway,
both the experiment and the theoretical analysis show the
CCRP++ not only outperforms the CCRP in efficiency(run-time),
but also keeps the optimality(egress time).
In the future, we would like to improve the CCRP++ in two
aspects. First, although we have avoided most of the redundant
shortest path expansions in each iteration, we believe the updates
in different iterations can be further accelerated by adapting, e.g.
[8], which can accelerate the repeated shortest path expansions
from single source. Second, we would like to investigate the
spatial-temporal distributing nature of the evacuation planning
problem, and utilize for example, the Map-reduce distributing
computing schema, to further accelerate the run-time.

Acknowledgement
The author would like to thank Dr. Sangho Kim, Dr. Farnoush
Banaei-Kashani, and Prof. Cyrus Shahabi for the great discussion
and encouragement during this research. The author is funded by
Ph.D. Student Exchange Program from Chinese Scholarship
Council [2007-3020] during the study in Infolab, Department of
Computer Science, Viterbi School of Engineering, USC, and 863
High Tech Program [2007AA120502] from Chinese Technology
Administration during the study in Gis4g Lab, Earth and Space
Science Dept., Peking University.

References
[1] Q. Lu, B. George, and S. Shekhar. Capacity Constrained

Routing Algorithms for Evacuation Planning: A Summary of
Results. Proceedings of 9th International Symposium on
Spatial and Temporal Databases (SSTD’05), 291-307, 2005.

[2] K., Sangho, B. George, and S. Shekhar. Evacuation Route
Planning: Scalable Heuristics, (ACMGIS ’07), Seattle, WA,
2007

[3] B. George, K. Sangho and S. Shekhar. Spatio-temporal
Network Databases and Routing Algorithms: A Summary of
Results, (SSTD’07), Boston, July, 2007.

[4] H. Hamacher and S. Tjandra, Mathematical Modeling of
Evacuation Problems: A State of the art. Pedestrian and
Evacuation Dynamics, 227-266, 2002.

[5] E. M. Hooks, and S. S. Patterson, On Solving Quickest Time
Problems in Time-Dependent and Dynamic Networks,
Journal of Mathematical Modeling and Algorithms, Vol. 3
No.1. 39-71, 2005.

[6] Spatial Dataset contribute by Dr. Li Feifei
(http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm)

[7] E. Dijkstra, A note on two problems in connexion with
graphs, Numerische Mathematik (1959) 1, pp. 269-271.

[8] S. Koenig, M. Likhachev and D. Furcy. Lifelong Planning
A*. Artificial Intelligence Journal, 155, (1-2), 93-146, 2004.

24

http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm

Video Analytics for Multi-camera Traffic Surveillance ∗ †

Dongyu Ang
University of North Texas

da0097@unt.edu

Yao Shen
University of North Texas

shenyao1016@hotmail.com

Prakash Duraisamy
University of North Texas

pd0075@unt.edu

ABSTRACT
A low-cost Video Image Detection Systems (VIDS) is in-
troduced. Using video analytics, the system can count the
number of vehicles making a left (or right) turn at an un-
seen intersection plus collect statistics on other traffic condi-
tions. Other functionality can be added. Two cameras with
non-overlapping views were used as the information source.
Between them was situated a “T” intersection. Comparing
the automated data collected from the two cameras’ video
with manually generated truth data, no errors were found
over five minutes of video.

1. INTRODUCTION
In an increasingly automated and controlled traffic surveil-
lance environment, situational awareness is more difficult for
human operators without system assistance. A new genera-
tion of internet is approaching. All sorts of electronic devices
could be connected to global high speed internet including
traffic surveillance cameras creating what is coming to be
called cyber-physical systems. A huge numbers of real-time
surveillance real time will make it impossible for human traf-
fic monitors to manage. Thus, a system which can monitor
the traffic automatically at intersections is crucial for off-
loading labor from a traffic management center (TMC).

Video analytics is a solution to traffic surveillance. The no-
tion is to provide camera-side processing to collect statistics
such as volume, speed, and occupancy while being obser-

∗This study was supported in part by the Texas Department
of Transportation under grant No. 0-6432
†Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists,
requires prior specific permission andor a fee. IWCTS ‘09
November 3, 2009, Seattle, WA, USA. Copyright 2009 ACM
ISBN 978-1-60558-861-2.... $10.00

vant for aberant events. Rather than depend on an operator
at a TMC to continuously monitor the video, the TMC is
alerted only when there is an unusual occurrence. For ex-
ample, market products such as Xcam-1 from Citilog, Inc.,
Vantage Edge 2 from Iteris, Inc., and Autoscope Solo Tera
from Econolite, Inc. are capable of detecting wrong-way ve-
hicles, stalled vehicles, and other events. The advantage of
such products is operating costs – it is not necessary to in-
clude the labor-intensive activity of continuous monitoring
by an operator. Our goal is to demonstrate the feasibility
of multi-camera video analytics for which the inference of
events not within the field of view of any camera is possible.

We assume, in this experiment, two cameras. They must
be within line of sight of each other in order to achieve low-
cost wireless communication. Both cameras have on-board
processing. Both are cognizant of the road network lying
between them, yet, parts of that network are not visible to
either camera.

In typical visual surveillance or ambient intelligence systems,
event analysis is based on the tracking and identification of
visual objects given multiple camera views. Objects are of-
ten captured in more than one view and it is desirable that
these multiple instances of the same visual object can be
automatically identified. The tracking of multiple visual ob-
jects in one view is a classic vision problem that has received
much attention and finds application not only in surveil-
lance systems but also in other machine vision scenarios,
such as robotics. Multiple-view tracking has only recently
received much research attention. The main advantages of
using many cameras for tracking in surveillance scenarios [9,
21] are an arbitrarily large coverage of any given area. For
most environments, a single camera is not able to provide
adequate coverage or tracking performance. This is espe-
cially important in critical areas and where more robustness
against occlusion is desirable [18]. While a single-camera
tracker searches for correspondences only between frames,
the additional task of a multi-camera tracker is to estab-
lish correspondences between observations of objects across
cameras. The goal is to correctly tag all instances of the
same visual object at any given location and at any given
time instant.

Specific models can add constraints that simplify this task.
Kalman filters (KF) [13] are an efficient algorithm to esti-
mate the state of dynamical system. However, it is limited
to the Gaussian and linear assumptions [4]. The Extended

25

25

Kalman filter (EKF) was introduced to address this limita-
tion by using non-linear functions and non-Gaussian noise
models. Since the non-linear functions are applied only to
the sample means iteratively, the EKF may diverge quickly
if either the initial state estimation or the process model is
incorrect [20]. Isard and Blake [10] proposed a more power-
ful particle filter (PF) tracker, which is considered to be both
efficient and flexible in solving non-linear and non-Gaussian
problems [1, 19].

Although, the tracking algorithms in [4, 20, 10, 1, 19] are
proven both accurate and efficient, they suffer from the oc-
clusion problem due to the utilization of just a single cam-
era. Multiple cameras can help solve occlusion problems, al-
though the establishment of correspondences between mov-
ing objects in different views is a difficult challenge.

The rest of this paper is organized as follows. In Section
2, related work is introduced. In Section 3 we present the
methodology we used for background modeling, foreground
vehicle detection , vehicle identification, trajectory estima-
tion and verification. In section 4 we describe our experi-
ments and give out our results. Lastly, we present the con-
clusions and future work in section 5.

2. RELATED WORK
An intelligent transportation system (ITS) is an application
that incorporates electronic, computer, and communication
technologies into vehicles and roadways for monitoring traf-
fic conditions, reducing congestion, enhancing mobility, and
so on. Many researchers have devoted themselves to in-
vestigating different solutions for traffic monitoring and the
tracking of vehicles [7, 3]. Nearly all of these studies are lim-
ited to a single traffic video camera at one time. With data
from multi-cameras, we can fuse the information to achieve
a higher level of service for transportation networks.

In the multiple camera problem, geometric information is
used to obtain robust results. Cai and Aggarwal [5], used
multiple calibrated cameras for surveillance. Kettnaker and
Zabih [14] used a Bayesian formulation of the problem to
reconstruct the paths of objects across multiple cameras.
Collins et al. [8] developed a system consisting of multiple
calibrated cameras and a site model. [17] proposed an ap-
proach for tracking in cameras with overlapping FOV that
does not require calibration. Khan et al. [15] used field of
view (FOV) line constraints for tracking in cameras with
overlapping views. Javed et al. [11] extended this approach
for tracking in non-overlapping cameras. Multiple cameras
are used to recover the homographic relations between cam-
era views of the same scene from different perspectives. For
example, Black et al. [2] use a combined 2D/3D Kalman fil-
ter for object tracking. Alignment-based approaches rely on
recovering the geometric transformation between cameras
automatically. This can be done using spatial image align-
ment methods and incorporating time information [6] or by
matching motion trajectories in different cameras. In [16]
this begins by finding the limits of the field of view of each
camera that are visible in the other cameras. Also, [22] pro-
poses a ground-based fusion method for camera handover
using space-time constraints and stereo segmentation. In
our case, cameras were located in locations not permitting
field of view overlaps, yet nonetheless allow establishing path

dependencies between them using probabilistic models [14,
12].

3. METHODOLOGY
Two cameras were used to monitor road traffic and adja-
cent observation areas. With these two cameras the same
vehicle can be observed from different positions and angles.
The objects of interest were identified from image data by
foreground processing methods. Figure 1 is the workflow
diagram for the surveillance system that was implemented.

Figure 1: Flowchart for our surveillance system

3.1 Background modeling and foreground ve-
hicle detection

Background modeling is an important aspect of video surveil-
lance systems. It is necessary that this module detect the
relevant details of the scene while excluding irrelevant clut-
ter. It also must be computationally efficent to allow for
real-time processing of video sequences. An adaptive back-
ground model was used for the entire region of awareness
and for segmenting the moving objects that appear in the
foreground.

Stationary cameras captured traffic video. The overall accu-
racy of the system depended on robust foreground object de-
tection. However, inherent changes in the background itself
is not completely stationary due to such phenomena as wa-
vering trees and flags, water surfaces, and so on. Therefore,
background modeling for traffic video surveillance needs must
meet certain requirements. The foreground modeling com-
ponent detects moving objects (blobs) regardless of whether
they represent a vehicle or non-vehicle.

To achieve the capability of detecting moving objects in the
scene, the scene must be ”learned.” The first four blocks of
figure 1 are preprocessing including frame extraction, frame
selection, background estimation and foreground detection.
The background estimation algorithm creates a reference im-
age which contains the background components of the scene.
The background image, as noted, is fundamental in detect-
ing moving objects and tracking them. It is used to dis-
tinguish foreground components. To avoid the worst effects
of noise, a median filter was applied across five consecutive
frames to obtain a good estimate of the background. The
specific operation of the median filter was as follows: For
each pixel, the intensities were collected for the five frames;
the intensities were sorted; the median value was selected as
the background pixel value. This process was repeated for
each pixel to construct the final background image.

Given the background image, the foreground image was ob-
tained by the subtracting it from the current frame. To re-

26

26

(a)

(b)

Figure 2: Foregound image(a) and foregound im-
age(b) after morphological opening

move small objects created by noise, the morphology open-
ing was applied to the foreground image (Figure 2). The
morphology opening operator is composed of two basis oper-
ators – erosion and dilation. An erosion is capable of deleting
completely small objects, so the dilatation operation which
follows does not reinstate them. Thus the result of a mor-
phology opening operator on a binary image is the original
image with very small objects removed.

Once subtraction and morphological filtering is complete,
the remaining blobs are the objects in the foreground. Blob
features such as the centroids, the areas, and the shapes were
calculated. These blob features were used to differentiate
between objects and noise. Moreover, the extraction of color
features of vehicles were also dependent on these features.

3.2 Feature Extraction
In order to identify the same vehicle in two scenes, fea-
ture extraction of the objects is essential. Color histograms
were calculated from RGB representations. The images were
coded in RGB. Six bins were populated from each channel,
R,G, and B, respectively.

In order to obtain the histogram of each feature, the kernel
based density qt(x) = {qt(n; x)}

n=1...N
of the feature distri-

bution was estimated by

qt(n; x) = Ch

PN

i=1
(K

‚

‚

y−xi

h

‚

‚

2

)δ[b(xi) − n]

where xi are the pixel locations centered at y with radius
h. b(xi) denotes the bin index of xi. δ is the Kronecker delta

function, Ch is a normalization constant ensuring
PN

n=1
qt(n; x) =

1.

At time t, the feature model qt(x) obtained in one video
frame was compared to the feature model in another video
frame qo = {qo(n)}

n=1...N
with

PN

n=1
qo(n) = 1. In our

experiments, the histogram values were chosen beginning at
location x, the centroid of the blob.

Figure 3: vehicles in camera 2

3.3 Vehicle Identification by Feature Match-
ing

Given the real-time nature of VIDS, it was necessary to have
matching criteria embedded in algorithms that were compu-
tationally fast as well as accurate. The distance between
two feature distributions was defined as

D =
p

1 − ρ[q(n; x), qo(n)]

which is called Bhattacharyya distance. where

ρ[q(n; x), qo(n)] =
PN

n=1

p

q(n; x)qo(n)

The larger ρ, the greater the similarity that exists between
two distributions. For example, given two identical his-
tograms of two images, ρ=1 would be obtained, which indi-
cates a perfect match. Two classification criteria were em-
ployed in the study. One was a color match criterion and a
second a vehicle direction with timestamp match criterion.

27

27

Figure 4: vehicles in camera 1

Both criteria utilize the features extracted from the vehicle
blobs (Figures 3 and 4). To recapitulate, the vehicle was
detected by foreground segmentation algorithm described
earlier. The states of the vehicle, color, direction and times-
tamp, were saved in vehicle description tables, one for each
of the two cameras. Vehicle features in one table were then
matched with vehicle features from the other table. How-
ever, before doing so, the vehicles for which the timestamp
had expired were deleted. An expired timestamp indicated
that the vehicle had chosen a path not within the camera
field of view. Thus, before deleting, its trajectory had to be
classified as explained in the next subsection. With respect
to vehicles in the two tables which pass the color match cri-
terion before the timestamps expire, they were deleted once
the trajectory path was classified.

3.4 Trajectory Estimation and Verification
The above section described how vehicles were matched be-
tween camera views in real time. The remaining task is the
classification of vehicle trajectories based on matches or, in
some cases, lack of a match. As mentioned in our problem
definition we had two cameras at a “T” intersection, refer-
ring to Fig 5. Two tables, one corresponding to each camera,
were maintained. Each table was used to store the features
of vehicles that entered the field of view of the respective
camera. Each time a new vehicle was stored into a table,
its features had to be compared with the vehicles in the
other table. A unique decision logic was developed to fuse
the vehicle information from two tables. See figure 5. To
reduce the search time for future events, once the vehicle’s
trajetory was classified, the corresponding vehicle features

were deleted from the tables. Referring to figure 5, trajecto-
ries were assigned to one of six classes named “1to2”, “1to3”,
“2to1”, “2to3”, “3to1” and “3to2”. The overall algorithm fol-
lows:

loop
every new frame
if a vehicle’s timestamp has expired then

delete the expired vehicle out the table and classify
the vehicle’s trajectory as 1to3 or 2to3

end if
if new vehicle detected in new frame then

save vehicle information in table
if the vehicle’s direction is away from the intersection
then

compare the vehicle with those in the other table
if find one match then

classify the vehicle’s trajectory as 1to2 or 2to1
and delete vehicle from both tables

else
classify the vehicle’s trajectory as 3to1 or 3to2
(i.e., entering via the unseen intersection)

end if
else

(the vehicle’s direction is toward the intersection)
do nothing other than save the vehicle and its in-
formation in appropriate table

end if
end if

end loop

For example, in camera 1, if a vehicle with the direction from
camera 1 to camera 2 is detected, it is sufficient to search
for the corrsponding feature in the event table of camera 2
within a certain time interval. If the features (both direction
and color) match, the vehicle is identified and its trajectory
across both camera field of views can be classified. Other-
wise, a vehicle remains in the event table until its timestamp
expires. When the timestamp expires, it is deleted from the
event table and is assumed to have made a turn at the “T”
intersection. Upon deletion, its trajectory classification is
assigned.

4. EXPERIMENTS AND RESULTS
Preliminary testing was performed in order to validate the
efficiency and effectiveness of the Bhattacharyya distance.
Only vehicles coming from road 1 to road 2 were used in
this aspect of the experiment. Color histograms of all the
vehicles detected by camera 2 were stored beforehand and
Bhattacharyya coefficient was computed between each vehi-
cle detected in camera 1 and all the vehicles in camera 2,
ignoring the timestamp. The experimental results (Figures
6-9) indicate there exists a threshold that all correct matches
exceed and no incorrect match exceeds.

Recall that the videos were taken from cameras that faced
different segments of one straight, connected road. Between
the two road segments, there was a “T” intersection not in
the field of view of either camera. Thus, a vehicles identi-
fied in one camera but not both must have emerged from
the unseen intersection or turned into the intersection. The
distinction is made by examining the direction of movement
within the single view available.

28

28

Figure 5: Method of identify vehicles

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vehicle ID

B
ha

tta
ch

ar
yy

a
co

ef
fic

ie
nt

Vehicle 1 in camera 1 VS Vehicles in camera 2

Figure 6: Vehicle 1 in camera 1 VS Vehicles in cam-
era 2

We used over five minutes of traffic video taken at the “T”
intersection for program testing. For reasons of safety, we
confined our experimental observations to a low density traf-
fic area. The total number of vehicles was 14. At the time
of video capture, we manually recorded the trajectory of
all vehicles to use as truth data. The 14 vehicles encoun-
tered included two buses, three pickups, one van, two SUVs
and six sedans. By comparison with the manually tabu-
lated data, the result from the program correctly classified
the trajectories of all 14 vehicles.

5. CONCLUSIONS AND FUTURE WORK
We have presented the results of vehicle trajectory classifi-
cation based on multi-camera views and processing that em-
ployed morphological filtering and pattern recognition meth-
ods. Using this method we have been able to effectively esti-
mate trajectories for vehicles of various classes. More impor-
tantly, our method exhibits real-time operability, partly be-

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vehicle ID

B
ha

tta
ch

ar
yy

a
co

ef
fic

ie
nt

Vehicle 2 in camera 1 VS Vehicles in camera 2

Figure 7: Vehicle 2 in camera 1 VS Vehicles in cam-
era 2

Figure 8: Vehicle 4 in camera 1 VS Vehicles in cam-
era 2

cause frame sampling was used to discard all but five frames
per second. The results are twofold: (1) identification of a
set of features that correctly match vehicles as viewed from
different cameras; (2) an algorithm that successfully classi-
fies vehicle trajectories in real time. Our experiment showed
that based on the features selected and on our method, the
same vehicle in different views in different cameras can be
identified correctly.

We plan to continue development of video analytics for traf-
fic monitoring using actual traffic surveillance video. We
expect that maintaining the real-time operating mode will
continue to be dependent on grabbing only five frames per
second from the surveillance video. We plan to increase the
functionality of our program by adding incident detection,
emergency and wrong way vehicle detection, and other use-
ful events.

6. ACKNOWLEDGEMENTS
We are heartily thankful to our supervisor, Bill Buckles,
whose encouragement, guidance and support from the initial
to the final version enabled us to develop an appreciation of
traffic surveillance technology.

29

29

Figure 9: Vehicle 5 in camera 1 VS Vehicles in cam-
era 2

Lastly, we offer regards and gratitude to Yan Huang, Yassine
Belkhouche, and all those who supported us in any respect
during the completion of this study.

7. REFERENCES
[1] S. Arulampalam, S. Maskell, N. Gordon, and

T. Clapp. A tutorial on particle filters for on-line
non-linear/non-Gaussian bayesian tracking. IEEE

Trans. Signal Process, pages 174–188, 2002.

[2] J. Black, T. Ellis, and P. Rosin. Multi view image
surveillance and tracking. IEEE Workshop on Motion

and Video Computing, pages 169–174, 2002.

[3] J. E. Boyd, J. Meloche, and Y. Vardi. Statistical
tracking in video traffic surveillance. In IEEE Conf.

Comput. Vis., pages 163–168, 1999.

[4] Y. Boykov and D. Huttenlocher. Adaptive Bayesian
recognition in tracking rigid objects. In Comp. Vis.

and Pattern Rec, pages 697–704, 2000.

[5] Q. Cai and J. Aggarwal. Tracking human motion in
structured environments using a distributed camera
system. IEEE Trans. on PAMI, 21(11):1241–1247,
Nov 1999.

[6] Y. Caspi and M. Irani. A step towards
sequence-to-sequence alignment. IEEE Conf. on

Computer Vision and Pattern Recognition, pages
682–689, 2000.

[7] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik.
A real-time computer vision system for vehicle
tracking and traffic surveillance. Transp.Res. Part C,
6(4):271–288, 1998.

[8] R. Collins, A. Lipton, H. Fujiyoshi, and T. Kanade.
Algorithms for cooperative multisensor surveillance. In
IEEE, 2001.

[9] G. Foresti, Micheloni, L. C. Snidaro, P. Remagnino,
and T. Ellis. Active videobased surveillance system:
The low-level image and video processing techniques
needed for implementation. IEEE Signal Process.

Magazine 22, 22(10):25–37, 2005.

[10] M. Isard and A. Blake. Condensation - conditional
density propagation for visual tracking. Int. J. of

Comp. Vis, pages 5–28, 1998.

[11] O. Javed, Z. Rasheed, O. Alatas, and M. Shah.

Knightm: A real time surveillance system for multiple
overlapping and non-overlapping cameras. In ICME,
2003.

[12] O. Javed, Z. Rasheed, K. Shafique, and M. Shah.
Consistent labeling of tracked objects in multiple
cameras with overlapping fields of view. Tracking

across multiple cameras with disjoint views, 2:952–957,
2003.

[13] R. E. Kalman. A new approach to linear filtering and
prediction problems. Trans. ASME-J. Basic Eng.,
82:35–45, 1960.

[14] V. Kettnaker and R. Zabih. Bayesian multi-camera
surveillance. IEEE Conference on Computer Vision

and Pattern Recognition, 2:252–259, 1999.

[15] S. Khan, O. Javed, Z. Rasheed, and M. Shah. Human
tracking in multiple cameras. In ICCV, 2001.

[16] S. Khan and M. Shah. Consistent labeling of tracked
objects in multiple cameras with overlapping fields of
view. IEEE Trans. on PAMI, 25(10):1355–1360, Oct
2003.

[17] L. Lee, R. Romano, and G. Stein. Monitoring
activities from multiple video streams: Establishing a
common coordinate frame. IEEE Trans. Pattern Anal.

Machine Intell., 22(8):758–767, 2000.

[18] A. Mittal and L. Davis. M2tracker: A multi-view
approach to segmenting and tracking people in a
cluttered scene. internat. Computer Vision,
51(3):189–203, 2003.

[19] K. Nummiaro, E. Koller-Meier, and G. L. Van. A
color-based particle filter. In Workshop on

Generative-Model-Based Vision, June 2002.

[20] R. Rosales and S. Sclaroff. 3D trajectory recovery for
tracking multiple objects and trajectory guided
recognition of actions. In Comp. Vis. and Pattern Rec,
pages 117–123, 1999.

[21] G. Wu, Y. Wu, L. Jiao, Y.-F. Wang, and E. Chang.
Multi-camera spatio-temporal fusion and biased
sequence-data learning for security surveillance. ACM

Internat. Conference on Multimedia,, pages 528–538,
2006.

[22] T. Zhao, M. Aggarwal, R. Kumar, and H. Sawhney.
Real-time wide area multicamera stereo tracking.
IEEE Conference on Computer Vision and Pattern

Recognition, 1:976–983, 2005.

30

30

Machine Learning Approach to Report Prioritization with

an Application to Travel Time Dissemination
Piotr Szczurek Bo Xu Jie Lin Ouri Wolfson

University of Illinois at Chicago

{pszczu1,boxu, janelin ,wolfson}@uic.edu

ABSTRACT

This paper looks at the problem of data prioritization, commonly

found in mobile ad-hoc networks. The proposed general solution

uses a machine learning approach in order to learn the relevance

value of reports, which represent sensed data. The general

solution is then applied to a travel time dissemination application.

Through the use of offline learning, the paper analyzes the

feasibility of the proposed approach and compares the accuracy

performance of several common machine learning algorithms. The

results show that not all machine learning algorithms may be used

for prioritization and that the use of the logistic regression

algorithm is particularly suited for the problem. The learned

logistic regression model is then used in a simulated VANET

environment. The results of the simulations show that it is better

at prioritizing reports in terms of their usefulness in aiding

vehicles to choose the shortest travel time paths.

Categories and Subject Descriptors

H.4.3 [Information Systems Applications]: Communications

Applications; C.2.4 [Computer-Communication Networks]:

Distributed Systems; I.5.2 [Pattern Recognition]: Design

Methodology – Classifier design and evaluation;

General Terms

Algorithms

Keywords

data dissemination, VANET, data prioritization, machine

learning, traffic information systems

1. INTRODUCTION
The current expansion of computing devices with wireless

communication capabilities helped to motivate creation of various

information dissemination applications. Many of these

applications are related to communicating traffic information.

Examples include systems for disseminating parking availability

[3], travel speeds [11, 15], or traffic video clips [7, 8]. By

disseminating the information, drivers can make better choices

regarding their routes or destinations. However, due to the

limitations of communication devices, it might not be possible to

send all of the information. As a result, a prioritization scheme has

to be developed which ranks the usefulness of the information and

allows for only the most useful to be disseminated. The method

for finding such a prioritization scheme is the subject of this

paper.

To find a prioritization scheme for a variety of applications, this

paper proposes the use of a machine learning approach. In this

method, the information is assumed to be contained in reports

which are disseminated over time. The receivers of such reports

then use the contained information to possibly alter their

behavior. By examining the characteristics of the reports

including the sender information and analyzing its impact on the

recipient, it can be determined which reports should be considered

the most useful. A useful report is one that has an impact on the

decision making process of the receiver. For example, in a travel

time dissemination application, a report will be useful when it

changes the path of a vehicle.

To find the usefulness of reports, this work uses machine learning

algorithms. The results show that the machine learning technique

achieves good accuracy and hence can be used reliably for

prioritization of the reports. Additionally, simulations of a travel

time dissemination application show that the learned model

provides better information to vehicles than common heuristics in

terms of providing better routes with lower travel times.

In the next section, some relevant work on the topic of

prioritization will be discussed. The following section will

describe the model used for the general machine learning

approach. The method itself will then be described in the

subsequent section. Later, a specific application (travel time

dissemination) of the general approach will be described. This

will be followed by a presentation and discussion of the results

and a conclusion.

2. RELEVANT WORK
Prioritizing reports for memory (cache) management and

bandwidth management in mobile wireless networks has been

studied in a number of works. In [10] the rank of a report is a

weighted sum of its popularity, reliability, and size. The paper

does not discuss how the weights are determined. In [14] reports

are ranked such that the number of replicas of each report is

proportional to the square root of its access frequency. According

to [5], such a distribution of replicas has the optimal replication

performance in minimizing the query cost. However, for the

dissemination of real-time traffic information, the access

frequency is not a suitable solution because the access frequency

to a newly produced report is always small but the newly

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

IWCTS `09 November 3, 2009, Seattle, WA, USA.

Copyright © 2009 ACM ISBN 978-1-60558-861-2…$10.00.

31

produced report is usually of most interest. Thus for traffic

information we use machine learning to determine the report

relevance. In [15], traffic reports are ranked using an ad-hoc

formula in which the rank is in reverse proportion to the sum of

the age and distance of a report. Finally, in [6][9][13] reports are

ranked based on an abstract utility function which is to be defined

by specific applications. Our ranking method can be viewed as an

instantiation of the utility function.

3. MODEL AND PROBLEM DEFINITION
The system consists of a set of mobile nodes. A node is a physical

entity capable of data computation, storage, and short range

wireless communication. A node can also observe its environment

through a sensing device. Examples of nodes include vehicles

equipped with on-board computers and Wi-Fi. The sensing device

may be a camera installed in the car, an odometer, or GPS.

At any point in time, a node may create a report, which contains

the data derived from the sensing device. The data is formed as a

fixed set of attributes and their values. An attribute identifies the

type of the data value. An example of a report is a speed report,

whose attributes are time and average speed. Other examples of

reports include reports about traffic accidents or available parking

spaces.

Every node carries a reports database of fixed size. The reports

database contains reports the node has received or created over

time. The reports stored in the database are communicated over

time to a subset of other nodes in the network. The determination

of when, how many, and which reports get communicated is

controlled via a communication protocol. It is assumed that the

communication capabilities are limited by the bandwidth and

hence not all reports in the reports database may be transmitted. A

reports prioritization mechanism is thus employed in order for the

communication protocol to determine which reports to transmit.

Each node in the network has the ability to judge the relevance of

a report. The relevance represents the utility a report holds when

it would be sent to other nodes, given the sending node’s current

characteristics and the attribute values of the report. In other

words, how useful would the report be to the recipient? This value

is numeric and can be either Boolean or real valued. In cases

where nodes can only judge whether the report was good or bad,

the report’s value is Boolean (0 for bad, 1 for good). For example,

consider a report that represents the availability of a parking

space. The report is judged by a node (vehicle) as “good” if the

parking space remains available when the node reaches it. In cases

where nodes assign numeric values, those will be assumed real

valued in the range of 0 to 1.

The problem is thus to find a method for estimating the relevance

of a report before it is sent, given the characteristics of the node

holding the report and the attribute values of the report. By

knowing the relevance, the communication protocol has greater

information about which reports provide the most benefit to the

nodes. Also, estimating the relevance can also be useful to

determine which reports are kept and which are discarded by the

node, given that its local database is of limited size.

In this paper we assume that the size is the same for all the

reports. Thus the relevance of a report does not depend on its size.

The extension to variable reports sizes is straightforward via a

greedy solution to the Knapsack problem (see [1]).

4. METHOD DESCRIPTION
The general idea behind our method is to use the received reports

as an input to a machine learning process. Given that nodes can

make judgments regarding the relevance of a report, a supervised

learning algorithm can be used with the judged relevance value as

the given output. Over time, each node learns a model that can

estimate the value of a report at any time.

To provide the necessary training data for the learning algorithm,

each report is augmented with additional attributes related to the

sender of the report. Although dependent on the actual

application, the attributes in spatio-temporal environments would

generally depend on time and space. By knowing these attributes,

the receiving node can learn the mapping from the sender’s and

report’s characteristics to the relevance value of a report. The

receiving node, which would later resend the report, can then have

a better estimate of the value to the next receiver.

There are generally two ways in which the machine learning

method can be used: online or offline. In the online method, nodes

continually learn the model by using the incoming reports as

training examples. The communication protocol would then use

the most current model to estimate the relevance value of reports.

In the offline method, there are two stages. In the first stage,

nodes only gather the training examples without modifying their

models. Note that these training examples may be generated

through simulations. After a period of time, the examples are

gathered and fed to the machine learning process. After this, the

learned model is used by all nodes in the network. The advantage

of this method is that nodes would not have to incur the overhead

of the machine learning algorithm. The disadvantage is that the

learned model cannot adapt to changing situations. Nevertheless,

since in the online case, nodes initially have no model, the offline

method is useful for learning the model a priori, thereby providing

a way of bootstrapping. Also, the offline method can be used to

analyze which attributes should be used for learning and which

machine learning algorithm is best for the given application. The

focus of this paper is on the offline method and in particular, how

it can be used in a specific, transportation related application.

The machine learning method for relevance value estimation can

be applied to a variety of applications. The main constraint is that

every node should be capable of evaluating the relevance of

reports and that the value be based on a goal common to all

nodes. This is frequently true for applications set in environments

such as peer-to-peer networks, including mobile and vehicular ad-

hoc networks (MANETs and VANETs). One application that has

recently been studied by researchers is travel time information

dissemination. The next section of the paper looks at how the

machine learning approach can be used in this application.

5. APPLICATION – TRAVEL TIME

DISSEMINATION
This section will discuss how the general machine learning

method can be used in a particular application: dissemination of

vehicle travel times on a road network. The dissemination is done

by vehicles carrying computational devices with communication

capability. The communication protocol, which those vehicles

will use, is based on the TrafficInfo algorithm [15]. In this

algorithm, a simple heuristic is used to evaluate which reports

should be periodically broadcasted. In this section, the machine

learning approach is applied in order to replace the heuristic with

32

a learned model that is better at providing the relevance value of

the reports. In the following sections, we define the model in

which the TrafficInfo algorithm is applied and which will be used

for the machine learning method.

5.1 Vehicles
The model consists of a set of vehicles. A subset of these vehicles

is equipped with GPS and devices capable of computation and

fixed-sized storage. Additionally, we assume the devices provide

communication capabilities (i.e. 802-11b), and have transmission

range of 250 meters. We will assume that each vehicle has a

predetermined destination which it reaches via a shortest travel

time path, according to the information it currently has in its

database. When a vehicle reaches its destination, it chooses

another one immediately.

5.2 Digital Map
Each vehicle holds a digital map used for storing information

about travel times. The digital map is made up of a set of road

segments. The properties of each road segment that are of interest

in this paper are:

 Road segment identifier

 Coordinates of the segment endpoints

 Road type

 Travel time estimate

 List of reports used for the estimate

 Time period number

The road segment identifier uniquely determines the particular

road segment in the digital map. The endpoint coordinates provide

connectivity information used for shortest path calculations. Road

type indicates the physical characteristics of the particular road

segment. The road type could be identified as either a highway or

a city street segment. The travel time estimate is the estimated

time required to traverse the road segment in the given time

period. This estimate is calculated as the average of travel times

contained in the list of reports. The time period is a 5 minute

interval between subsequent times that time in minutes is evenly

divisible by 5. The time period number identifies the given period

by a unique number. Time period numbers start at 0 during initial

system startup and increase by 1 for each subsequent period. For

example, if the first interval is 12:00pm-12:05pm; the time period

number at time 12:11pm is 3 and represents the time period

12:10-12:15pm. The initial value of the time period number, when

no reports have been received is -1. For the travel time estimation,

the initial value is equal to the free-flow travel time.

5.3 Travel Time Measurements and Reports

Database
As each equipped vehicle fully traverses a particular road

segment, it uses its GPS to record the travel time. This

information is then saved in a travel time report. This report

stores the following fields:

 Report identifier

 Road segment identifier

 Travel time

 Time period number

The report identifier is unique to every created report and allows

for duplicate detection. As in the digital map, the road segment

identifier is used to uniquely match the report to a particular road

segment. The travel time for reports is the time measured by the

given vehicle’s GPS. The time period number identifies the

interval in which the time measurement was taken.

When a report is created, it is stored in a reports database. Each

vehicle carries its own reports database, which can hold at most

250 reports. The reports are sorted in order, according to a value

given by the ranking function. When it is the case that the reports

database is full, upon insertion and re-ranking, the lowest ranked

reports will be discarded until all reports can be stored within the

given capacity.

5.4 Reports Dissemination
Vehicles exchange reports according to a peer-to-peer

dissemination protocol. We will assume a particular dissemination

algorithm called TrafficInfo is used by the vehicles. TrafficInfo

uses a combination of flooding and periodic broadcasting to

disseminate reports. Flooding is used for newly created reports,

while periodic broadcasting is done for reports stored in the local

database.. When a broadcast is initiated, all reports in the

vehicle’s reports database are ranked according to the ranking

function. All top ranked reports that can fit inside the transmission

message size are then broadcast. The goal is thus to find the

relevance value of a report before the transmission in order to

achieve the best ranking.

5.5 Travel Time Updates
Initially, all vehicles have the free-flow travel time as the estimate

for every road segment. After every 5 minute interval ends, all

reports in the database that have been received in that interval are

used for updating the travel time. Before updating, the reports are

first analyzed based on their period number. For each road

segment, the period number of all reports for the segment is

recorded and only the reports pertaining to the maximum period

number are kept. All other reports are discarded.

The way the report is used for updating depends on the relation of

its period number to the period number contained in the vehicle’s

digital map for the given segment. There are three cases:

1. Report’s period is smaller than the digital map’s. The report

is thus discarded since it contains old information.

2. Report’s period is greater than the digital map’s. The report

then replaces all previously received reports for the segment.

The period in the digital map becomes the report’s period.

3. The periods are equal. In this case, we will first make sure

the received report is not a duplicate. If it is, it will be

discarded. Otherwise, it will be added to the report list for

the given road segment and the travel time estimate will be

recalculated by averaging all reports’ travel times in the list.

This updating is done for every report received in the last 5

minutes. At the end, the vehicle will recalculate the shortest travel

time path to its destination.

5.6 Offline Learning
As described earlier, the first step in the method is to augment the

reports with additional attributes. Since the data is of spatio-

temporal type, the most obvious attributes to include relate to time

33

and space. For time, the age of the report will be used, which is

calculated as the difference between the current time period and

the time period in which the travel time measurement was taken.

To reflect the distance, the attribute used will be calculated as the

free-flow travel time along the shortest path to the mid-point of

the road segment specified by the report. Additionally the type of

road will also be included as an attribute. The type can refer to

either a highway or city street road segment.

Since the value of the road type attribute is the same for the

sender and receiver, there will only be two additional attributes

added to the travel time report. These attributes are:

 Age of the report at time of creation or sending

 Sender’s (or creator’s) free-flow travel time from vehicle’s

current position to the mid-point of the road segment

The age and free-flow travel time to the segment are initially filled

in at the time of report’s creation and updated when the report is

broadcast. That way, the receiver of the report knows the

condition of the sender when the report was broadcast. These

report attributes will serve as the input to the machine learning

process. The relevance value of a report, which will serve as the

output, is determined by the receiving vehicle as either 1 or 0,

depending on whether the report changed the vehicle’s travel

path. Additionally, any discarded report will also be labeled

negatively (i.e., 0).

Although offline learning can be performed using real vehicles,

the Scalable Wireless Ad hoc Network Simulator (SWANS) and

STreet RAndom Waypoint (STRAW) [2,4] vehicle mobility

model were used for the purposes of this paper. This simulator

combines a mobile ad-hoc network communication simulator with

a vehicular mobility simulator based on vehicles choosing random

waypoints in the road network and using car-following theory to

model individual vehicular movements.

In order to collect the necessary input/output pairs, the learning

was done using epochs. Each epoch consisted of a single road

network and a group of vehicles, each randomly placed and

having a random destination. Every vehicle initially started with

their digital map containing free-flow travel times for every road

segment. In each epoch, a set of travel time reports is created

about a single, randomly chosen, road segment. Each report in the

set has its travel time set to a random number, chosen uniformly

from 0 to the free-flow time for that segment. The time period of

each report varies from 0 to 100. The number of reports is thus

101, with the first report having time period of 0, the next report

1, etc. The current time period is then set 100. Therefore, the ages

of the created reports range from 100 to 0.

After the reports are created, each vehicle chooses a random

number between 0 and 100 to serve as the period number for the

given road segment in its digital map. While the travel time for

that segment will still be the free-flow time, the use of the random

period number will allow learning of the effects of age since the

travel time updates are dependent on the relation of the report’s

period to the current period. Once the period is chosen for the

vehicle, the 101 reports are then used to independently update the

digital map of that vehicle. This means that after each update is

performed, the digital map is returned to its original state.

During each update, it will be determined whether the shortest

path of the vehicle would have changed as a result of the update.

If so, an example labeled as 1 will be created, otherwise an

example will be labeled as 0. The offline learning procedure is

outlined formally below.

Algorithm: Offline learning for single region

Input: R, road network within region w/ free-flow travel times

 n, number of vehicles

 e, number of epochs

Output: L, List of labeled learning examples

For each epoch 1..e:

1. Randomly place n vehicles on road network R

2. Randomly choose a segment s in R

3. Randomly choose a travel time t between 0 and free-flow

travel time on segment s

4. For each vehicle 1..n:

a. Choose a random period number p between 0 and 100

b. Create a travel time report about segment s with a free-

flow travel time and period p and use it to update

vehicle’s digital map

c. For period number Pi: 0..100:

i. Create a travel time report about segment s with

travel time t and period Pi and use it to update

vehicle’s digital map

ii. Recalculate the vehicle’s path to destination given

current state of digital map. If path has changed,

set label to 1, otherwise 0.

iii. Create learning example consisting of age=100-p,

distance=free-flow travel time from vehicle’s

location to segment s, roadType=(roadType of s),

label

iv. Restore previous digital map state.

6. EVALUTION
The purpose of the evaluation is to establish the feasibility of the

offline learning method. The next section describes the tests done

to determine the model accuracy obtained by various machine

learning algorithms. The following section uses one of the learned

models to evaluate how it performs in terms of vehicle route

choice.

6.1 Machine Learning Accuracy
The Weka learning toolkit [12] was used for evaluation of various

machine learning algorithms. The training data consisted of a set

of learning examples gathered using the offline learning

algorithms for two regions from the city of Chicago.

Figure 1. Region 1 road network.

34

Figure 2. Region 2 road network.

The road networks of these two regions are shown in figures 1 and

2, respectively. Region 1 is approximately 2.76 sq. mi. of

northwest Chicago, while region 2 is about 6.75 sq. mi. from

Chicago’s south side.

For each region, the offline learning algorithm was used with 25

epochs. 100 vehicles were used for region 1 and 250 for region 2.

The examples output from both regions were combined into a

single data set. Since the number of negative examples far

outnumbered the positive ones, the SpreadSubsample Weka

routine was used to downsample the negative examples. The

result was a data set with 7677 positive and 7677 negative

examples. This data set was then input to the following machine

learning algorithms:

 Naïve Bayesian (NaiveBayes Weka implementation)

 Logistic Regression (using Logistic Weka implementation)

 Support Vector Machines (using SMO Weka

implementation, w/ buildLogisticModels enabled)

 Artificial Neural Network (using Multilayer Perceptron

Weka implementation)

 Decision Tree (using J48 Weka implementation)

Each of the algorithms was used with the default parameters used

by Weka, with exceptions as stated above. The testing of learning

algorithms was performed using a 10-fold cross validation

method.

Figure 3. Accuracy of various machine learning algorithms.

Figure 3 shows the accuracy that resulted from using each of the 5

algorithms. All algorithms, with exception of decision trees,

performed similarly with an accuracy of approximiatelly 83-84%.

The decision trees had the best accuracy of 96.22%. It should be

noted though, that while on one hand, the decision trees achieved

extremely high accuracy, the resulting tree is very complex and

not useful for report prioritization. The reason is that most of the

leafs in the tree contained only one class of examples, which

meant that almost every report would have a revelance value of 0

or 1. This is counterintuitive, given that two reports with different

values of age, distance, or road type should be given a different

probability of changing a vehicle’s path. On the other hand, the

other machine learning algorithms performed much worse than

decision trees, but were able to capture the intuition behind the

attribute relationships to the probability of changing a vehicle’s

path. The most understandable of these algorithms was the logistic

regression model. It assumes that the relevance value of a report is

a linear combination of the attribute values and finds the weights

of the attributes that best fits the data. The model resulting from

the used dataset was the following:

U = -0.0322*age - 0.02*distance + 0.3885*[road=highway] –

0.3885*[road=city street] + 4.9053

As can be seen, this model predicts that an increase in age will

result in a decrease in the probability of changing path. This

follows the intuition, since the travel time update policy discards

many old reports. Similarly, the distance also varies inversely with

relevance value. As could have been expected, the model also

predicts more changes with highway segments than city streets.

The approximately 80% accuracy achieved by the logistic

regression method, coupled with the easy understanding of the

resulting model, makes it the most promising in the use for

prioritization.

Since the makeup of the road network might change the weights

found in logistic regression, separate models for the two regions

were also build to determine how the model would be affected.

The results showed that both age and distance attributes did not

vary much from the combined model. The age weight was

determined to be 0.0313 for region 1 and 0.0336 for region 2. The

distance weights were 0.0186 for region 1 and 0.0222 for region

2. The road type weight did significantly change between the two

regions, with 0.7213 for region 1 and 0.0391 for region 2. This

indicates a strong relationship between the road network and the

road type of the segment on the probability of a report changing a

vehicle’s path. The constant factor between the two regions was

relatively the same with -4.7806 for region 1 and -5.1552 for

region 2.

6.2 Use of Learned Model in Prioritization
In order to evaluate the usefulness of the learned model, the

SWANS/STRAW simulator was used to generate several

scenarios in which vehicles disseminate travel time reports using

the TrafficInfo algorithm. 100 vehicles were used for each

scenario. The vehicles traveled along the road network

constrained by region 1. In each scenario, vehicles were randomly

placed and traveled to random destinations for 1 hour. After

reaching a destination, the vehicle would choose another one

immediately. The path to each destination was recomputed every

5 minute period according to the shortest travel time given the

state of the vehicle’s current digital map.

The highlight the differences in the various prioritization schemes,

the TrafficInfo protocol was modified to disseminated only top 10

ranked reports. Additionally, the speed limits on most highway

segments were lowered to 3 km/h in order to simulate a highly

congested highway.

Two metrics were used for evaluation. The first is the average trip

time, which measured the time it took to reach a destination

averaged across all vehicles and destinations. This metric shows

how it the prioritization scheme affects the travel time for an

average vehicle. The second is the total travel time difference.

35

This metric was calculated by summing the absolute values of the

differences between the travel time along the shortest path

according to vehicle’s current information and the path according

to full information. Full information is defined as a digital map

which was updated with every report ever created, as soon as it

was created. The summation was performed every time a vehicle

recalculated its path. This metric shows the level of information

fidelity the prioritization scheme is able to achieve.

Figure 4. Total path travel time difference achieved by various

prioritization schemes.

Figure 5. Average trip time using various prioritization

schemes.

Figures 4 and 5 show the results of the simulations. The

comparison was done using several heuristic methods and the

learned models. The –distance and –age heuristics rank the reports

inversely proportional to distance and age, respectively.

1/(age+dist) was the original heuristic used by TrafficInfo. The

logit is the model learned using logistic regression using two

regions. Logit2 is the model learned using only region 1. Lastly,

the results were also compared to that of a randomized

prioritization and a case, were no dissemination is performed

(noninfo). The results show that the logit models outperformed all

other methods in both metrics. In the total path travel time

difference metric, the logit model outperformed original

TrafficInfo heuristic by over 15%. The impact on the average trip

time was small, with only 2 seconds difference. It should also be

noted that the model (logit2) learned by using examples from the

same region as was used in the simulations yielded much better

performance in both metrics than the model learned from the

combined data set (logit). This once again indicates a strong

relationship of the road network to report’s priority.

7. CONCLUSION
This paper proposed a machine learning approach to report

prioritization for use in peer-to-peer environments. The method

uses incoming reports in order to provide input to supervised

machine learning algorithms. The learned model can then be used

by all nodes in order to rank the reports to be disseminated.

Through simulations, the paper was able to show the feasibility of

using the machine learning method in a travel time dissemination

application by achieving an accurate prediction model for the

reports. Additional simulations showed that the learned model

outperformed heuristics in terms of disseminating the information

most likely to affect the vehicle’s path.

8. ACKNOWLEDGMENTS
This research was supported in part by the National Science

Foundation IGERT program under Grant DGE-0549489. It was

also supported by National Science Foundation grants IIS-

0847680, 0513736, 0326284, and 0957394.

9. REFERENCES
[1] C. Aggarwal, J. Wolf, P. Yu. Caching on the World Wide

Web. TKDE, 11(1), pp. 94-107, 1999.

[2] R. Barr. An efficient, unifying approach to simulation using

virtual machines. PhD thesis, Cornell University, 2004.

[3] M. Caliskan, D. Graupner, and M. Mauve. Decentralized

discovery of free parking places. VANET, 2006.

[4] D. R. Choffnes and F. E. Bustamante. An Integrated

Mobility and Traffic Model for Vehicular Wireless

Networks. VANET, 2005.

[5] E. Cohen and S. Shenker. Replication strategies in

unstructured peer-to-peer networks. SIGCOMM, 2002.

[6] A. Datta, et. al. Autonomous Gossiping: A self-organizing

epidemic alg. for selective information dissemination in

wireless mobile ad-hoc networks. ICSNW’04.

[7] M. Guo, M. Ammar, E. Zegura. V3: A vehicle-to-vehicle live

video streaming architecture. PerCom 2005.

[8] U. Lee, et al. Dissemination and Harvesting of Urban Data

Using Vehicular Sensing Platforms. IEEE Transactions on

Vehicular Technology, (58)2, 2009, pp. 882-901.

[9] F. Perich, et al. On Data Management in Pervasive Com-

puting Environments. TKDE, 16(5), 2004.

[10] F. Sailhan and V. Issarny. Energy-aware web caching for

mobile terminals. ICDCSW’02.

[11] L. Wischhof, A. Ebner, H. Rohling, M. Lott, and R.

Halfmann. SOTIS – a self-organizing traffic information

system. IEEE Vehicular Technology Conference, 2003.

[12] I. H. Witten and E. Frank. Data Mining: Practical machine

learning tools and techniques, 2nd Edition, Morgan

Kaufmann, San Francisco, 2005.

[13] Y. Zhang, et al. ICEDB: Intermittently-Connected Con-

tinuous Query Processing. ICDE 2007.

[14] Y. Zhang, J. Zhao and G. Cao. Roadcast: A Popularity

Aware Content Sharing Scheme in VANETs. ICDCS, 2009..

[15] T. Zhong, B. Xu, P. Szczurek, O. Wolfson. Trafficinfo: An

Algorithm for VANET Dissemination of Real-Time Traffic

Information. 5th World congress on ITS, 2008.

36

On the Performance of Adaptive Traffic Signal Control

Chen Cai1 Bernhard Hengst Getian Ye Enyang Huang Yang Wang

Carlos Aydos Glenn Geers

Neville Roach Laboratory, National ICT Australia
Department of Computer Science and Engineering, University of New South Wales

ABSTRACT
In this paper, we present a study in understanding sensing error’s
impact on traffic signal control performance. Adaptive traffic
signal control systems depend on information from traffic sensors
to interpret the state of traffic. Signal timings are adjusted at real
time according to the state of traffic. Queue length is an
important element of the state of traffic, and errors in estimating
queue length influences control decision and hence the
performance. This paper presents the first attempt to quantify the
effects of sensing error on control performance in the field of
traffic control. A novel technique to estimate queue length using
data from single loop detector is presented, and estimations are
compared with parallel observations. The results show that
moderate overestimation of queue length may significantly
improve control performance. The benefit from overestimation
suggests including arriving traffic in system state, and using
look-ahead algorithms to calculate signal timings.

Categories and Subject Descriptors
I.2.1 [Simulation and modeling]: model validation and analysis

General Terms
Algorithms, Measurement, Performance.

Keywords
Traffic Signal, Sensor Error, Queue Estimation.

1. INTRODUCTION
In this paper we present a simple model based traffic signal
controller that switches cycle time and splits based on the
perceived queue lengths on the approaches. In reality queue
lengths are hard to determine. We develop a novel Bayesian
technique based on a single upstream loop detector in order to
obtain a probabilistic estimate of the queue length. Our objective
is to understand the impact of estimation error on control
performance.

2. TRAFFIC SIGNAL CONTROL
SYSTEMS
Conventional traffic signal control systems calculate fixed cycle
time and green time splits for conflicting signal groups. While
satisfying the overall demand structure at the signalized
intersection, fixed-time systems inadequately accommodate
systematic or random variations in traffic demand. Adaptive
control systems, on the other hand, adjust to changes in traffic
demand by calculating signal timings in real time.

The state-of-the-art for adaptive signal control usually involves
state-space representation of the control system and sequential
decision-making in real time. The control objectives are
commonly set to optimize some measures of generalized control
performance over a time period, whilst accommodating both
systematic and random variations. The quantities to be calculated
are the sequences of signal changes to be invoked and the
associated timings.

Central to the state-space presentation are the techniques that use
sensing information to construct the system state. The state of a
traffic signal control system is defined in [1] as a composite of
two elements: the state of traffic and the state of controller. The
state of traffic at a junction can be specified by the number of
vehicles queuing in each of the links and the arrivals of vehicles
in the near future. The former of these is influenced by the signal
controls applied. The state of the controller can be specified by
the signals that are green, any changes that are currently
underway, the times at which they will be completed and the
times of expiry of any minimum or maximum permitted
durations.

Since the state of the controller is easily accessible, the main
challenge in constructing the system state is to achieve accurate
estimation of queue length. The difficulty in this is that loop
detectors are usually the only source of traffic information, and
the norm is that only one loop detector may be available for a
traffic lane. The loop detector can be installed upstream of the
stopline or at the stopline. For the upstream detector, if the queue
spills beyond the location of the detector, no more arriving
vehicle can be detected until the queue length is less than the Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. IWCTS `09 November 3, 2009, Seattle,
WA, USA. Copyright © 2009 ACM ISBN 978-1-60558-861-2.... $10.00.

1 Corresponding author for the paper:
chen.cai@nicta.com.au, +61 (0)2 8306 0421

37

distance between the stopline and the detector position. This
poses a difficult problem for updating the traffic state.

Literature addressing queue length estimation in real time with
the possibility of spilling back is limited. A deterministic model
using shockwave theories [2, 3] was proposed by Liu et al. [4].
An important assumption for this approach is that the progression
of shockwaves in traffic flow can be detected by high-resolution
detectors.

In this study, we present a novel technique called the Q_tracker
that uses vehicle counts and vehicle speed from a single loop
detector to estimate queue length.

3. THE Q TRACKER
The Q_tracker is a technique that estimates queue length in real
time. It provides the probability distribution of queue length at a
given time. The mean value of the distribution is used to
construct the traffic state. A traffic controller implements the
control policy according to the traffic state and the controller
state.

3.1 Queue Length Estimation
For queue length estimation, the measurement obtained from
inductive loop detector is denoted by ot at each time instant t. In
this work, ot is the velocity measured by the loop detector. Given
the measurements over time, the posterior distribution of queue
length qt can be iteratively updated at each time instant t. Using
Bayes’ rule, we have

p(q
t+1

|o
1:t+1

) ∝ p(q
t+1

|o
1:t

) p(o
t+1

|q
t+1

)

 = p(o
t+1

|q
t+1

) p(q
t+1

|q
t
) p(q

t
|o

1:t
)

qt

∑ , (1)

where

o

1:t
= {o

i
| i = 1, 2, ..., t} is the history of measurements up to

time instant t.

The transition probabilities of the queue length are assumed as
the following:

p(q
t+1

|q
t
) =

α , if q
t+1

= q
t

± 1

1− 2α , if q
t+1

= q
t
,0 < q

t
< q

max

1− α , if q
t+1

= q
t
,q

t
∈{0, q

max
}

0, otherwise

 , (2)

where qmax is the maximum number of vehicles in the queue, and
parameter α the transition probability factor. Considering vehicle

inflow

f

t
in and outflow

f

t
out , the actual transition probability

p(q

t+1
|q

t
) is then shifted by

f

t
out − f

t
in toward the original point

for qt+1. Since

f
t
in and

f

t
out usually are not integers, linear

interpolation is employed during the shift of the transition
probability.

The queue length from the stop line to the loop detector is
denoted by qL. In the case where qt < qL, the observation
likelihood p (ot | qt) is approximated by a Gaussian distribution
N (ot ; µ, σ 2). For a vehicle passing through the loop detector
with constant deceleration, we have

µ2 ∝ q

L
− q

t
, where µ

denotes the mean velocity. Hence we have

µ = α q

L
− q

t
, (3)

where parameter α adjusts the mean velocity. Similarly, it is
assumed that

σ 2 ∝ q

L
− q

t
. Additionally, there exist two factors

influencing the velocity distribution. The first factor β1 concerns
that even when the queue length is beyond the loop detector,
vehicles in the queue may keep moving. The second factor β2
concerns the bias in measuring vehicle velocity. This is because
mean vehicle length rather than actual vehicle length is used for
velocity estimation. Regarding these two factors, we have

σ 2 = β

1
(q

L
− q

t
) + β

2
 . (4)

We further define the posterior distribution of the velocity as

p(o
t
|q

t
) ∝

N (o
t
;α q

L
− q

t
,β

1
(q

L
− q

t
) + β

2
), if q

t
< q

L

N (o
t
;0,β

2
), if q

t
≥ q

L

 , (5)

where

0 ≤ o

t
≤ v

max
, and

p(o |q

t
) do

0

vmax∫ = 1 .

3.2 Vehicle Velocity Measurement
The mean vehicle velocity estimated from the loop detector
signal is used as the observation or measurement at each time
instant. A method for estimating mean velocity from the loop
detector signal over time is presented in this work. To estimate
the vehicle velocity, the relationship between vehicle count C,
time occupancy O, vehicle velocity {vi}, and vehicle length l can
be described as:

O = 1

T

l
i
+ l

loop

v
ii=1

C∑ , (6)

where lloop is the length of the loop detector, and T is the duration
of the measurement. For the update process of the queue length
tracking, it is assumed that velocity vmean is constant within
interval T and the mean vehicle length lmean is computed from
historical data Hence we have

O ≈

C(l
mean

+ l
loop

)

v
mean

⋅T
. (7)

The measured mean velocity can be written as

o

t
= v

mean
=

C(l
mean

+ l
loop

)

O ⋅T
. (8)

3.3 Inflow and Outflow
Inflow rate is defined as the average number of vehicles that
have passed through a loop detector during a period of time.
Inflow rate estimation is related to vehicle count as well as the
detection of long queue. Vehicle count is the number of vehicles
that have passed through a loop detector on a road and it can be
obtained by counting the number of falling edges of the loop
signal. If the length of a queue is longer than qL, then the queue
is beyond the loop detector and is considered to be a long queue.
When a long queue occurs, the estimate of inflow rate is updated
by using the historical information, e.g. the inflow rate calculated
one or two days ago. Kalman filter has been employed to
improve the robustness of the inflow rate estimation.

The outflow rate estimation is to estimate the flow rate at which
vehicles enter an intersection from an approach. When the traffic

38

light is red, the outflow rate becomes zero. Otherwise the
outflow rate is simply approximated by a constant value in this
work.

4. TRAFFIC SIGNAL CONTROL POLICY
A simple heuristic control policy is employed for this study. This
policy is derived from exploiting the apparent optimality of
saturation flow algorithm [5], in which the signal changes only
when the favored queue is exhausted. The saturation flow
algorithm was further studied in [6], where it was treated as the
basis policy and was compared to two other comparison policies.
One of the comparison policies considers switching traffic signal
before the favored queue is empty. The other allows extending
green after the favored queue is exhausted. Dynamic
programming [7] was used to show that there were domains in
the state space where the basis policy was optimal, and that there
were other domains in which the comparison policies were
optimal. Recent studies in adaptive traffic signal controlling
using advanced dynamic programming techniques [8, 9]
suggested that considering information of arriving traffic as an
extra dimension of state space improves performance of the basis
policy. In this study, we simply use detected vehicle headway as
an indicator of the arriving traffic. The basis policy is often
impractical in reality since it may extend green for too long.
Regarding this, we add a few conventional constraints to traffic
signal timings, including minimum green, maximum red, and
maximum cycle length. An inter-green period is further added to
ensure safety at the intersection. The control policy can be
summarized as the following.

Decision (a). Switching signal if all the following conditions are
satisfied: 1) favored queues are exhausted, 2) vehicle headways
of the concerned approaches excess critical value, and 3)
minimum green is exhausted. Decision (a) is overridden if
decision (b) is applicable.

Decision (b). Switching signal if maximum red is exhausted or if
maximum cycle time is exhausted.

5. NUMERICAL EXPERIMENT
In numerical experiments Q_tracker and actual observation of
queue length are in turn employed to present the traffic state.
Depending on the traffic state, the control policy supervises
switching of the traffic signals. Performance results thus obtained
are analyzed to show the impact of sensing error in control
performance. We use the PARAMICS simulation software [10]
for numerical experiments. A specific plug-in was supplied so
that actual queue length can be observed parallel to the
simulation. The configuration of the traffic intersection in
PARAMICS is provided in Section 5.1. The definition of queue
for the PARAMICS plug-in is introduced in Section 5.2. Analysis
of numerical results is included in Section 5.3.

Fig. 1 A simulated traffic intersection in PARAMICS model

5.1 PARAMICS Model
We present a very simple PARAMICS network for this study. It
contains one signalized intersection, consisting of two
perpendicular roads. Each road is a two-way road with a single
lane in each direction and a speed limit of 60 km/h. The
intersection has four signal groups that can be independently
controlled by the user. Each of the four signal groups controls
one of the four approaches. The intersection does not allow right
or left turns, therefore vehicles can only proceed straight ahead.
This model is graphically shown in Figure 1.

Each of the four approaches to the intersection is 1100 metres
long. The first 100 metres at the far ends of the network are
zones or vehicle source areas. Vehicles loaded are only from a
single vehicle type defined as a car of length 4.40 metres and
mass of 1370 kg and the traffic volume loaded into the network
can be configured by the user. The volumes of traffic demand are
summarized in Table 1.

There are advance and stop line loop detectors in each approach.
Only the advanced loop detector is used for estimating queue
length. Each loop is 4.5 metres long. The advance loop detectors
upstream edges are located 80 metres before the stop line. The
stop line detectors' downstream edge coincides with the stop line
position.

Table 1. Traffic demand volumes for the simulated
intersection (vehicles per hour)

 Origins of traffic

 West East South North Sum

West 600 600

East 600 600

South 400 400

North 400 400

Sum 600 600 400 400 2000

5.2 Definition of Queue
For the purposes of this paper, we require a definition of the
queue length of vehicles for each individual lane of the
intersection approaches. The queue length is the length between
the lane stop line and the last stationary vehicle on that lane. A
stationary vehicle is defined by two hysteresis thresholds of 5
km/h and 15 km/h. A vehicle joins a queue if its velocity falls

39

below 5km/h, and leaves the queue if its velocity goes above 15
km/h. Flow conservation applies to the formulations of the
queue. This definition of queue is written as a plug-in to the
PARAMICS model, and runs parallel to the simulation process.

5.3 Results and Analysis
We first look at the accuracy of the Q_tracker in estimating
queue length by comparing with the observation obtained from
the PARAMICS plug-in, and then discuss the results in control
performance.

5.3.1 Accuracy in estimation

The results presented here were obtained from a single run of
simulation, with one hour of simulated time and a time step of
1.0s. We illustrate the estimated queue and the observed queue
in the East and North approaches in Figure.2(a) and 2(b)
respectively. The Q_tracker estimation is marked by the dark
(black) line and the observations by the lighter (orange) line. The
dynamics of the queues are broadly similar, but the Q_tracker
seems to be consistently overestimating the queue length.
Overestimation results in longer time to exhaust the queue, and
thus proivdes longer green time for the favored signal group,
according to the control policy we stipulated. A visual
comparison between Q_tracker and observation is shown in
Figure 3.

Common methods for measuring estimation accuracy in time
series are mean absolute percentage error (MAPE), which is
calculated as

MAPE =

1

n

Observation − Estimation

Observationi=1

n∑ ×100% ,

and mean absolute error (MAE), which is calculated as

MAE =

1

n
Observation − Estimation

i=1

n∑ .

The MAPE method is more informative than the MAE, but has
drawback in case with observations of zero value, which is true
in our case (an empty queue is common). We therefore use the
MAE, and the results are shown in Table 2. The error in
estimation is greater for approaches with heavier demand. Given
the consistent overestimation, the results suggest that, by using
Q_tracker, approaches with heavier demand will usually be given
more green time than in the case of using observation.

Table 2. Mean absolute error (in vehicles) as an indicator of
accuracy in queue length estimation; Q_tracker as the

estimation tool and PARAMICS plug-in as the source of
observation

West East South North

2.45 3.09 1.69 2.08

5.3.2 Performance in control
We obtained 10 paired results for the comparison in control
performance. Each paired run of simulation is fed with
independent seed with 1 hour simulated time and a time step of
1.0s. The measure for control performance is vehicle delay,
which is indicated by the average vehicle seconds per seconds.
Results are summarized in Table 3.

Despite the error in estimating queue length, the controller using
Q_tracker seems better in performance. Using the hypothesis of
equal mean, and by using the paired t-test, we found that t = -
17.84 while the two tail t-critical = 2.26, thus rejecting the
hypothesis. The controller using Q_tracker performs significantly
better than using observation reducing average vehicle delay
by 23%.

This combination of persisting bias in estimation and better
performance presents an interesting scenario. An explanation for
this is that delay is more sensitive to cycle time shortening than
extension. Using Webster's [11] delay formula, we can find that
the rate of delay increases rapidly for values of the cycle time
smaller than the optimum, but less rapidly for values larger than
the optimum. This means that it is better to err on the safe side
by stretching the cycle length a little longer than the computed
optimum, so does the controller equipped with Q_tracker and the
basis policy.

The numerical results also suggest that considering arriving
traffic as an extra dimension in state space is necessary and
improves control performance as this may lead to an appropriate
extension or shortening in green time. This requires the system
to look ahead from the current state, and achieve optimality in

2(a) East Approach

0

5

10

15

20

1200 1400 1600 1800 2000

Time steps

Q-tracker PARAMICS

2(b) North Approach

0

5

10

15

20

1200 1400 1600 1800 2000

Time steps

Q-tracker PARAMICS

Fig. 2 Estimated and observed queue lengths between t =
1200: 2000; estimated queue from Q_tracker is plotted in
dark (black) line, and observed queue in lighter (orange)
line; (a) shows queue of the East approach and (b) of the

40

the immediate term as well as in long-term. Dynamic
programming techniques are ideal to address such problems.
Reinforcement learning techniques may also be incorporated to
progressively improve control policies.

Table 3. Control performance comparison between using
Q_tracker and using observation

Run Q_tracker Observation
1 18.20 23.73
2 17.75 22.94
3 17.89 25.06
4 19.34 24.17
5 18.61 26.16
6 18.18 24.09
7 19.59 24.88
8 20.25 24.48
9 18.66 24.34
10 19.54 24.87

3(a) Estimated distribution of queue from Q_tracker at a
particular time; there are 10.3 vehicles (mean value) in the queue
in the West approach, and 8.8 vehicles (mean value) in the East
approach

3(b) Observed queue length in PARAMICS model; 7 vehicles are
queued in the West approach and 5 in the East approach

Fig. 3 A graphical illustration of queue estimation and
observation

6. CONCLUSIONS
In this paper we have presented a simple model based traffic
signal controller and compared its performance using two
different traffic models: the notionally exact queue length
returned by the Paramics plug-in and the approximate queue
length returned by the Q tracker, with the latter giving a 23%
improvement in vehicle delay when compared with the former.

By consistently overestimating the queue length the Q tracker
based controller switches to green earlier than the real queue
length based controller and gives longer green time which
provides the bulk of the performance improvement. It will also
‘gap-off’ earlier providing additional performance improvement.

From this work it appears as if there is an optimal queue length
for which phase switching should be triggered. It seems likely
that this optimal queue length would be a function of traffic flow
and could form part of the control parameters in a future study.

Accuracy of queue estimation can be further improved. The
variance of estimation can be taken into account in the control
policy. Results in this study suggests that the greater the
variance, the longer the green extension to the favored queue.

7. ACKNOWLEDGMENTS
NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the
Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.

8. REFERENCES
[1] Bell, M.G.H, Cowell, M.P.H, Heydecker, B.G., 1990.

Traffic-responsive signal control at isolated junctions. In:
Yagar, S., Rowe, E. (Eds.), Traffic Control Methods. New
York: Engineering Foundation, 273-294.

[2] Lighthill, M.J., and Whitham, J.B., 1955. On kinematic
waves. I. Flow movement in long rivers. II. A theory of
traffic flow on long crowded road. Proceedings of the Royal
Society A229, 281-345.

[3] Richards, P.I., 1956. Shockwaves on the highway.
Operation Research, 4, 42-51.

W

E

N

S

41

[4] Liu, X., Wu, X., Ma, W., Hu, H. 2009. Real-time queue
length estimation for congested signalized intersections,
Trans. Res. Part C, 17(4), 412-427.

[5] Dunne, M.C. and Potts, R.B. 1964. Algorithm for traffic
control, Operations Res., 12, 870-881.

[6] Grafton, R.B. and Newell, G.F. 1967. Optimal policies for
the control of an undersaturated intersection, Proc. 3rd

Intern. Symp. On Traffic Theory, edited by Edie, L.C.,
Herman, R., Rothery, R.W., New York: Elsevier, 239-257.

[7] Bellman, R., 1957. Dynamic programming, Princeton:
Princeton University Press.

[8] Heydecker, B.G., Cai, C., Wong, C.K. 2007. Adaptive
dynamic control for road traffic signals. Proceedings of

2007 IEEE International Conference on Networking,
Sensing and Control, London, United Kingdom, 193-198.

[9] Cai, C., Wong, C.K., Heydecker, B.G. 2009. Adaptive
traffic signal control using approximate dynamic
programming, Transportation Research Part C: Special
Issue on AI in Transport Analysis,17(5), 456-474.

[10] Smith, M., Duncan, G., Druitt, S. 1995. PARAMICS:
microscopic traffic simulation for congestion management,
IEE Colloquium on Dynamic Control of Strategic Inter-
Urban Road Networks, 8/1-8/3.

[11] Webster, F.V. 1957. Traffic signal settings, Road Research
Technical Paper, No.39, Road Research Laboratory,
London.

42

Trajectory Pattern Analysis for Urban Traffic

Fosca Giannotti1 Mirco Nanni1 Dino Pedreschi2 Fabio Pinelli1

Pisa KDD Laboratory
1ISTI - CNR, Pisa, Italy

2Computer Science Dep., University of Pisa, Italy

ABSTRACT
The increasing pervasiveness of location-acquisition tech-
nologies (GPS, GSM networks, etc.) is leading to the collec-
tion of large spatio-temporal datasets and to the opportunity
of discovering usable knowledge about movement behaviour,
which fosters novel applications and services. In this paper,
we apply a trajectory pattern extraction framework, called
T-Pattern, to a real-world dataset, describing mobility of
citizens within an urban area. The mining tool adopted
is able to provide useful insights both in terms of common
movements followed in the city, and, as by-product of the
mining engine, in terms of spatial distribution and tempo-
ral evolution of the traffic density. Both kinds of results are
provided in the paper in a visual form, aimed at helping the
analyst to better interpret them and link them to his/her
existing background knowledge of the domain.

1. INTRODUCTION
The large amounts of movement data collected by means

of current tracking technologies such as GPS and RFID
call for scalable software techniques helping to extract valu-
able information from these masses. This has stimulated
active research in the fields of geographic information sci-
ence, databases, and data mining. A general framework for
analysis of movement data where database operations and
computational methods are combined with interactive visual
techniques is suggested in [1]. This paper works towards this
direction, providing a case study of movement data analysis
where simple statistical means and pattern mining meth-
ods are merged together with visualization to improve the
understanding of the data.

This work is based on a set of tools that implement the
T-pattern mining paradigm introduced in [4]. In such work,
a new form of spatio-temporal pattern is studied, that suc-
cinctly show the cumulative behaviour of a population of
moving objects, a kind of information that provides a use-
ful abstraction to understand mobility-related phenomena,
particularly indicated for domains such as sustainable mo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWCTS ‘09, November 3, 2009, Seattle, WA, USA.
Copyright 2009 ACM ACM ISBN 978-1-60558-861-2 ...$10.00.

bility and traffic management in metropolitan areas, where
the discovery of traffic flows among sequences of different
places in a town (origin-destination flows) is a key issue [2].

The paper is organized as follows. First, Section 2 pro-
vides some indications of existing related work in the area of
spatio-temporal patterns, i.e., approaches to pattern extrac-
tion from trajectories alternative to the one adopted in this
paper. Then, Section 3 summarizes the basis of T-patterns,
as introduced in [4]. Then, Section 4 presents the dataset
considered in this paper, that is later analyzed with statisti-
cal means in Section 5 and T-patterns in Section 6. Finally,
some conclusions are drawn in Section 7.

2. BACKGROUND AND RELATED WORK
In this section we summarize some relevant research re-

lated to spatio-temporal pattern mining, which is the main
tool adopted in the analysis step of this work. To the best of
our knowledge, the existing literature on this subject is com-
posed of only a few recent works, that tackle the problem
from different viewpoints.

The work in [3] considers patterns that are in the form
of trajectory segments and searches approximate instances
in the data; on the opposite, the work in [5] provides a
clustering-based perspective, and considers patterns in the
form of moving regions within time intervals, such as spatio-
temporal cylinders or tubes and counts as occurrences all
trajectory segments partially contained in the moving re-
gions. A similar goal, but focused on cyclic patterns, is
pursued in [6]: the authors propose an effective and fast
mining algorithm for retrieving maximal periodic patterns,
treating time as discrete, yet dealing with continuous spatial
locations that are discretized dynamically through density-
based clustering. Finally, in [7] patterns in the form of se-
quences of locations are mined, building candidate patterns
over a predefined discretization of space (a grid) and time
(fixed snapshots), and computing the support of a pattern
as its expected support w.r.t. the location distributions of
the input objects.

3. T-pattern
Trajectory patterns (T-patterns in short) are an extension

of the traditional sequence mining paradigm, that integrates
spatial and temporal information extracted from trajectory
data. To our purpose, a trajectory of an object is a sequence
of time-stamped locations representing the traces collected
by some wireless/mobility infrastructure, such as the GSM
mobile phone network, or GPS traces recorded by portable
devices and transmitted to a central server. The location,

43

like a GSM cell or a lat-long pair, is abstracted using ordi-
nary Cartesian coordinates.

3.1 Problem definition
The inclusion of spatial and temporal information in a

sequential pattern can be obtained by making the patterns
include spatial constraints on each element of the sequence
and temporal constraints between consecutive elements:

Definition 1. A Trajectory pattern, called T-pattern, is a
pair (S, A), where S = 〈(x0, y0), . . . , (xk, yk)〉 is a sequence
of points in R2, and A = 〈α1, . . . , αk〉 ∈ Rk

+ is the (temporal)

annotation of the sequence. T-patterns will also be repre-

sented as (S, A) = (x0, y0)
α1−→ (x1, y1)

α2−→ · · ·
αk−→ (xk, yk).

An occurrence of a T-pattern takes place when both spa-
tial positions and transition times of the pattern approxi-
matively correspond to those found in an input sequence:

Definition 2. (Spatio-temporal containment, �N,τ) Given
a trajectory T , a time tolerance τ , a neighborhood function

N : R2 → P(R2) and a T-pattern (S, A) = (x0, y0)
α1−→

(x1, y1)
α2−→ · · ·

αk−→ (xk, yk), we say that (S, A) is contained

in T ((S, A) �N,τ T , or simply (S, A) � T , when clear from
context) if and only if there exists a subsequence T ′ of T ,
T ′ = 〈(x′

0, y
′

0, t
′

0), . . . , (x
′

k, y′

k, t′k)〉 such that:

1. (xi, yi) ∈ N(x′

i, y
′

i)

2. ∀1≤j≤k. |αj − α′

j | ≤ τ

where α′

j = t′j − t′j−1.

Intuitively, a T-pattern is contained in a trajectory if the
latter contains an approximated instance of the former, the
approximation being associated with both the spatial and
the temporal dimensions. We notice that comparisons are
not performed on absolute times, as spatio-temporal con-
tainment is based on the transition times between two con-
secutive elements in the sequence, expressed by the αi and
α′

i terms of condition 2 in Definition 2.
From containment, a natural definition of support and fre-

quent pattern can be assigned, as well as a general definition
of the trajectory pattern mining problem.

Definition 3. (Trajectory pattern mining) Given a data-
base of input trajectories D, a time tolerance τ , a neighbor-
hood function N() and a minimum support threshold smin ,
the trajectory pattern mining problem consists of finding all
frequent T-patterns, i.e., all T-patterns (S, A) such that

support
D,τ,N(S, A) ≥ smin

where the support support
D,τ,N of a T-pattern (S, A) is the

number of input trajectories T ∈ D such that (S, A) �N,τ T .

3.2 Region-of-Interest approach
Notice that the neighborhood function is a parameter of

the definition of containment of T-patterns in a input tra-
jectory, and different neighborhood functions yield different
variants of frequent T-patterns. In particular, the approach
introduced in [4] makes use of a simple neighborhood func-
tion based on the idea of Regions-of-Interest (RoI):

NR(x, y) =

A if A ∈ R ∧ (x, y) ∈ A
∅ otherwise

(1)

where R is a set of disjoint spatial regions – each repre-
senting a place that is relevant for our analysis.

The neighborhood of a spatial point is the whole region
it falls in, i.e., two points are considered similar iff they fall
in the same region. All points that are not covered by the
regions in R have an empty neighborhood, meaning that
they are not similar to any point (including themselves).
The result is that points disregarded by R will be virtually
deleted from trajectories and spatio-temporal patterns.

Adopting the RoI approach, the resulting set of frequent
T-patterns can be neatly represented as a set of temporally

annotated sequences R0

α1−→ R1 · · ·
αn−→ Rn, where each Ri

is a region of R.
The algorithms developed in [4] provide three ways of

defining the RoI:

1. take them from the user, based on his/her experience;

2. compute them automatically, by means of heuristics
that evaluate the traffic density on the geographic space;

3. compute them as in point 2, but dynamically updating
the traffic density along the extraction of each pattern,
at each step focusing only on the trajectories involved
in the partial pattern obtained so far.

We remark that the solutions 1 and 2 can be naturally
combined, thus merging the user background knowledge with
the suggestions provided by the density-based heuristics.
Moreover, a by-product of the algorithms used in approaches
2 and 3 is the estimation of the density of traffic, that is vi-
sually represented highlighting the most dense geographical
areas. Both these features will be exploited in this paper,
in order to provide preliminary insights on the data and to
obtain meaningful regions.

4. THE CASE STUDY
In this section, we explore a real case study by applying

data mining spatio-temporal methods described in this pa-
per. We develop two novel analytical services for mobility
analysis and traffic management, designed and validated in
collaboration with Milan Mobility Agency:

• a study describing how the traffic density is distributed
on space and how it changes along the time. This is
achieved by exploiting the density plots computed by
the T-pattern miner algorithm and described in Sec-
tion 5;

• a study of the frequent movement behaviours in terms
of T-patterns, that highlights common routes and tim-
ings followed by the vehicles in some time windows.
This study is presented in Section 6.

The dataset considered in this case study is a collection of
GPS traces describing the movement of GPS-equipped cars
in the urban area of Milan, Italy. The overall area covered
by the data is approximately a rectangle of size 14 km by 22
km. The temporal span of the dataset is exactly one week,
located in spring 2007. The number of vehicles tracked is
ca. 17k, that generated ca. 2 million observed points (i.e.,
time-stamped locations).

Before starting the analysis, the raw dataset was prepro-
cessed in order to:

44

(a) Map of Milan (b) Whole dataset (c) area analyzed

Figure 1: Map and dataset

(a) Sunday (b) Tuesday (c) Thursday (d) Saturday

Figure 2: Distribution of density along the week

• remove noisy input locations; and

• reconstruct the trajectories followed by the vehicles.

In the first step, a simple heuristics was applied, that com-
putes the apparent speed required to move from each input
point to the next one of the same vehicle, and then removes
the second point if such speed is higher than a given thresh-
old, fixed to ca. 200 km/h.

In the second step, the sequence of points correspond-
ing to a single vehicle has been partitioned into maximal
subsequences such that the time distance between two con-
secutive points less than a given threshold, fixed to 15 min-
utes. Higher delays between consecutive observations usu-
ally mean that the GPS device was simply switched off.

The preprocessing steps described above led to the re-
moval of ca. 48K points, and the creation of ca. 200K
trajectories, i.e., around 11 trajectories per vehicle.

The two graphs on the left of Figure 1(c) report a gen-
eral map of the city, and a plot of the traffic density (i.e.,
number of trajectories passing in the same area) computed
over the whole dataset. The darker points, corresponding to
higher density areas, cover the main roads of the city and, in
particular, the peripheral ring road has a very high density.
Preliminary experiments with both the types of analysis con-
sidered in this paper, i.e., density-based and pattern-based
analysis, showed that this phenomenon tends to overshadow
the density distributions and the movement patterns occur-
ring in the rest of the area. For this reason the analysis
has been focused to a smaller, central sub-area, apparently
more interesting also in terms of better understanding the
urban mobility of the city. The density distribution for the
selected area is shown in Figure 1(c)(right).

5. A TRAFFIC DENSITY-BASED ANALYSIS
As visible in the map in Figure 1(c)(left), within the pe-

ripheral ring road the city has four smaller ones (though
the external one does not form a complete circle) that carry
most of the internal traffic, as visible in Figure 1(c)(center
and right). In the following, we provide a more detailed
analysis of how such traffic is distributed, by highlighting
the areas that are visited by at least a given fraction of the
all trajectories.

Figure 2(d) reports the daily density distribution of four
days in the same week: Sunday, Tuesday, Thursday, and
Saturday. The dark/red points correspond to areas visited
by at least the 0.035% of trajectories. A first comparison
between them shows that the overall traffic increases signif-
icantly during working days. In particular, while on Sun-
day and Saturday only the three external rings are dense,
and only partially, during Tuesday and Thursday all four
rings, including the very central one, are massively popu-
lated. On the rings, and especially on their south-eastern
side, the traffic is significantly distributed also around the
main road, probably corresponding to areas that contain res-
idences and working sites, i.e., the main sources and desti-
nations of movements in an urban area. Another significant
phenomenon to notice is the presence of high traffic in a
whole sector in the north-eastern part of the city, not lim-
ited to the main roads. In particular, during working days
the traffic covers almost all the area, while during weekends
it takes around a 50% of the area. A study of the site on the
map reveals that it contains the central railway station of
the city, as well as other connections to public transporta-
tion (mainly metro stops and bus stations).

In order to understand how the traffic changes during the

45

(a) Thursday morning (7-10am) (b) Thursday afternoon (5-8pm)

Figure 3: Distribution of density

day, with particular emphasis to the daily movements be-
tween home and working place, a working day (Thursday)
was selected, tracing the traffic in the early morning and
late afternoon. Figure 3(b) reports the density distribution
of Thursday limited to two time intervals of duration equal
to 3 hours: one in the morning, from 7 a.m. to 10 a.m., and
one in the afternoon, from 5 p.m. to 8 p.m. The density
threshold, in this case, has been set to 0.01% of trajectories.
The figure shows that in general the density is higher during
the morning hours, in particular in the north-eastern sector
mentioned in the previous analysis, on the eastern side of the
second central road ring, and in the very center of the city.
However, in the afternoon distribution the density slightly
increases in the north-western and south-western sections of
the third ring (which is the most external one in this sec-
tor of the city). Such differences can be an indication of an
asymmetry either in the routes followed (due, for instance,
to a large presence of one-way roads or to well-known traffic
jams problems in some points of the city) or in the leav-
ing/returning times of workers (for instance, due to large
segments of population that leave home between 7 a.m. and
10 a.m., but return home earlier or later than 5-8 p.m., or
vice versa); or, simply, to the presence of people that move
also during working hours, which is especially reasonable for
the central zone.

6. A T-pattern-BASED ANALYSIS
In this section we apply the T-Pattern miner algorithm to

extract pattern over the same data analyzed in the previous
section.

Selection of RoI
First the algorithm was run in order to automatically extract
Regions-of-Interest solely based on density of traffic. The
result was a set of 11 middle-sized regions that cover the
main segments of the internal ring roads of the city, plus
79 very small regions that cover other dense spots. The
very center of the city, although interesting for our analysis,
was not taken into consideration due to its density that is
slightly smaller than the used threshold (the same applied in
the previous analysis, see Section 5). Therefore, as a user-
driven refinement of the regions proposed, the small regions

were removed, and 4 new square regions were added to cover
the center of the city. The result can be seen in Figure 4(c)
(yellow rectangles and the largest orange one).

Comparing working and weekend days
In order to better emphasize the behaviours followed during
working days, we extracted frequent T-patterns on Sunday
and on Thursday, comparing the results.

In Figure 4(a) we can see a pattern (depicted in blue and
numbered from 1 to 3) composed of three steps that occurs
during Sunday, starting from the southern segment of the
third ring road (counting from the center) and following the
road ring on the western side. The same pattern was found
on Thursday (depicted in blue and red, numbered from 1 to
5), but continued with two more steps that touch the north-
east side of the same road. That represents the fact that,
while during working days it is common to travel along all
the western side of the ring road (for instance to reach the
highways that connect Milan to Turin, to the west), dur-
ing the weekend the movements stop much earlier, probably
meaning that the connections provided in the north-eastern
part of the city are mostly used for working purposes.

Figure 4(b) reports another pattern, this time obtained
only on Sunday, that starts from the very center of the city
(a region manually provided by the user, added to those au-
tomatically extracted by the tool) and moves towards east
and north-east, touching two consecutive ring roads. From
the patterns found, this kind of apparently common move-
ment seems to be actually frequent only during the weekend.

Finally, Figure 4(c) shows how, in some cases, the dy-
namic version of the T-pattern miner algorithm, that up-
dates the RoI during the pattern extraction process, is able
to refine the patterns found with the approach used so far.
In particular, the Figure contains a refined pattern (depicted
in orange and numbered from 1 to 4) that starts from the
northern edge of the second ring road and continues the
movement following precisely the same road for three suc-
cessive steps. For comparison, the corresponding pattern
discovered by means of the static RoI approach, is com-
posed of region 1 and the large yellow region that contains
all steps from 2 to 4, thus loosing the information of where
exactly the movement develops – indeed, in the larger region

46

(a) Pattern on Sunday (blue) and
Thursday (blue and red)

(b) Pattern on Sunday, using a user-
provided region

(c) pattern dynamic versus static
regions

Figure 4: Typical itineraries in Milan

the road crosses several large streets making it difficult to
make clear inferences from the static RoI-based pattern.

7. CONCLUSION
In this paper we presented a real-world application of the

T-pattern mining paradigm, used both to extract prelimi-
nary information about the traffic density distribution over
the geographic space and along the time, and to extract pat-
terns describing frequent and precise behaviours followed by
the monitored population. The results of this analysis pro-
vide useful insights for the understanding of the global be-
haviour and the local phenomena and, at the same time, sug-
gests several improvements to better help the analyst, that
we are going to pursue in the near future. Among them, we
list the following:

• providing an effective graphical, interactive user inter-
face to ease some steps of the analysis, and to enable
new ones not possible for non-expert users;

• providing automatic means for merging background
knowledge and extracted suggestions concerning the
definition of Regions-of-Interest, for instance formu-
lated as a information integration (and conciliation)
problem;

• providing an interactive tool for navigating the output
patterns, to allow the selection by means of spatial,
temporal or qualitative criteria.

8. REFERENCES
[1] Gennady Andrienko, Natalia Andrienko, and Stefan

Wrobel. Visual analytics tools for analysis of movement
data. SIGKDD Explor. Newsl., 9(2):38–46, 2007.

[2] K. Ashok. Estimation and Prediction of

Time-Dependent Origin-Destination Flows. PhD thesis,
Massachusetts Institute of Technology, 1996.

[3] H. Cao, N. Mamoulis, and D. W. Cheung. Mining
frequent spatio-temporal sequential patterns. In ICDM,
2005.

[4] F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli.
Trajectory pattern mining. In Proceedings of the 13th

International Conference on Knowledge Discovery and

Data Mining (KDD’07). ACM, 2007.

[5] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering
moving clusters in spatio-temporal data. In Proceedings

of 9th International Symposium on Spatial and

Temporal Databases, pages 364–381. Springer, 2005.

[6] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou,
Y. Tao, and D. W. Cheung. Mining, indexing, and
querying historical spatiotemporal data. In KDD, 2004.

[7] Jiong Yang and Meng Hu. Trajpattern: Mining
sequential patterns from imprecise trajectories of
mobile objects. In EDBT, pages 664–681, 2006.

47

Author Index

Ang, Dongyu ………………………………………………………25
Aydos, Carlos …………………………………………………….. 37
Banaei-Kashani, Farnoush ……………………………………….. 13
Cai, Chen …………………………………………………………. 37
Dehne, Frank ………………………………………………………1
Demiryurek, Ugur …………………………………………………13
Dietz, Mark ……………………………………………………….. 7
Duraisamy, Prakash ……………………………………………… 25
Geers, Glenn ……………………………………………………… 37
Giannotti, Fosca ……………………………………………………43
Hengst, Bernhard …………………………………………………..37
Huang, Enyang …………………………………………………… 37
Lin, Jie …………………………………………………………… 31
Nanni, Mirco ………………………………………………………43
Omran, Masoud T. ………………………………………………...1
Pan, Bei ……………………………………………………………13
Pedreschi, Dino ……………………………………………………43
Pinelli, Fabio ………………………………………………………43
Sack, Jörg-Rüdiger ……………………………………………….. 1
Shahabi, Cyrus ……………………………………………………. 13
Shekhar, Shashi …………………………………………………….7
Shen, Yao …………………………………………………………. 25
Szczurek, Piotr ……………………………………………………..31
Wang, Yang ………………………………………………………..37
Wolfson, Ouri ………………………………………………………31
Xu, Bo …………………………………………………………….. 31
Ye, Getian ………………………………………………………….37
Yin, Dafei ………………………………………………………….19

	frontmatter
	frontmatter_1
	frontmatter_2
	frontmatter_3
	frontmatter_4
	IWCTS 2009 Organization
	General Co-Chairs
	Program Committee Co-Chairs
	Steering Committee
	Program Committee

	frontmatter_5

	p1_Dehne
	p7_Dietz
	p13_Demiryurek
	p19_Yin
	Introduction
	Problem Definition and Previous work
	The Evacuation Problem
	The CCRP Algorithm

	Algorithm
	Overview of Algorithm Design
	The Naive Approaches
	CCRP--
	CCRP-
	CCRP+

	The CCRP++

	Experiment
	Experiment on Different Network Size
	Experiment on Different Parameter

	Discussions
	Conclusion
	Acknowledgement
	References

	p25_Ang
	p31_Szczurek
	p37_Cai
	p43_Giannotti
	backmatter

